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1. INTRODUCTION

A vertex coloring of a graph G = (V,E) is a function C : V → IN+ such that for
every edge {v1, v2} ∈ E: C(v1) 6= C(v2). A hypergraph G = (V,E) is a generaliza-
tion of a graph for which hyperedges can be arbitrary-sized non-empty subsets of V .
There are several ways to define vertex coloring in hypergraphs: On one extreme,
it is required that for every hyperedge that contains more than two vertices, not
all colors are the same (there are at least two colors); on the other extreme, it
is required that for every edge, no color is repeated (all the colors are different).
In between these two extremes, there is another possible generalization: A vertex
coloring C of hypergraph G is called conflict-free if in every hyperedge e there is a
vertex whose color is unique among all other colors in the hyperedge. Formally:

∀e ∈ E : ∃v ∈ e : ∀v′ ∈ e : v′ 6= v → C(v′) 6= C(v) .

Conflict-free coloring models frequency assignment for cellular networks. A cel-
lular network consists of two kinds of nodes: base stations and mobile agents. Base
stations have fixed positions and provide the backbone of the network; they are
modeled by vertices in V . Mobile agents are the clients of the network and they
are served by base stations. This is done as follows: Every base station has a fixed
frequency; this is modeled by the coloring C, i.e., colors represent frequencies. If
an agent wants to establish a link with a base station it has to tune itself to this
base station’s frequency. Since agents are mobile, they can be in the range of many
different base stations. The range of communication of every agent is modeled by a
hyperedge e ∈ E, which is the set of base stations that can communicate with the
agent. To avoid interference, the system must assign frequencies to base stations
in the following way: For any range, there must be a base station in the range
with a frequency that is not reused by some other base station in the range. This
is modeled by the conflict-free property. One can solve the problem by assigning
n different frequencies to the n base stations. However, using many frequencies
is expensive, and therefore, a scheme that reuses frequencies, where possible, is
preferable.

The study of conflict-free colorings was originated in the work of Even et al. [2003]
and Smorodinsky [2003]. In addition to the practical motivation described above,
this new coloring model has drawn much attention of researchers through its own
theoretical interest and such colorings have been the focus of several recent papers
(see, e.g., [Even et al. 2003; Smorodinsky 2003; Pach and Tóth 2003; Har-Peled
and Smorodinsky 2005; Fiat et al. 2005; Elbassioni and Mustafa 2006; Chen et al.
2006; Alon and Smorodinsky 2006; Ajwani et al. 2007; Smorodinsky 2007]).

Fiat et al. [2005] considered the special case of the problem where the hypergraph
is defined as follows: Vertices are identified by points that lie on a line and E consists
of all subsets of V defined by intervals intersecting at least one vertex. A line with
n points has n(n + 1)/2 such subsets (for every i ∈ {1, . . . , n}, there are n − i + 1
different subsets containing i points). For n = 5, these subsets are shown in figure 1.
ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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Fig. 1. Points on a line and intervals

We call these subsets intervals since for our purpose, two intervals are equivalent if
they contain the same vertices. We represent colorings by listing the colors of points
from left to right in a string. For example, for the points in figure 1 (n = 5), 12312
is a conflict-free coloring, whereas 12123 is not (because the interval containing the
four leftmost points does not have a unique color).

Conflict-free coloring for intervals is important because it can model assignment
of frequencies in networks where the agents’ movement is approximately unidimen-
sional, e.g., the cellular network that covers a single long road and has to serve
agents that move along this road. In some kinds of networks, like wireless sensor
networks, the density of base stations can be very high and non-uniform. More-
over, the ranges of the agents can also be non-uniform. To ensure the absence
of conflicts we require the conflict-free property for all possible intervals. Also,
conflict-free coloring for intervals plays a role in the study of conflict-free coloring
for more complicated range spaces and it is a special case of conflict free coloring
points on the plane with respect to disks, when all points to be colored are collinear
(see [Even et al. 2003]).

The static version of the problem, where the n points are to be colored simulta-
neously, is solved in [Even et al. 2003]. For n = 2k − 1, the coloring Ck is defined
recursively as follows: C1 = 1 and Ck+1 = Ck ◦(k+1)◦Ck (where ◦ is the concate-
nation operator for strings). The coloring Ck is conflict-free and uses k colors for
2k − 1 points. For n with n < 2k − 1, the prefix (in fact, any substring) of length n
of Ck is conflict-free. Even et al. [2003] also show that this coloring with 1 + blg nc
colors is the best possible. Observe that Ck has the property that the maximum
color in each interval is always unique. Coloring intervals with a unique maximum
is called vertex ranking of paths, or ordered coloring of paths, and in that context
similar results were obtained in [Iyer et al. 1988; Katchalski et al. 1995].

The problem becomes more interesting when the vertices are given online by an
adversary. Namely, at every given time step t ∈ {1, . . . , n}, a new vertex vt ∈ V is
given and the algorithm must assign vt a color such that the coloring is a conflict-free
coloring of the hypergraph that is induced by the vertices Vt = {v1, . . . , vt}. Once
vt is assigned a color, that color cannot be changed in the future. It is desirable to
avoid recoloring for the following technical reason: If a base station changes color,
there might be disruption of service for all agents connected to it.1 We are interested
in an online setting, in which the algorithm has no knowledge of how vertices will

1A model in which a small number of recolorings is allowed is presented in [Bar-Noy et al. 2007].

ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.



4 · Amotz Bar-Noy et al.
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Fig. 2. Models for conflict-free coloring for intervals

be requested in the future. For this version of the problem, in the case of intervals,
Fiat et al. [2005] provide several algorithms. Their deterministic algorithm uses
O(log2 n) colors in the worst case; the result is tight because their algorithm requires
Ω(log2 n) colors on some inputs. Their randomized algorithm uses O(log n log log n)
colors with high probability. Recently, randomized algorithms that use O(log n)
colors with high probability have been obtained ([Chen 2006; Chen et al. 2007;
Bar-Noy et al. 2007]). All of the randomized algorithms assume the slightly weaker
oblivious adversary model, in which the adversary has to commit on a specific
input sequence before revealing the first vertex to the algorithm (see [Borodin and
El-Yaniv 1998]).

Our contribution. We introduce a hierarchy of four models for the above conflict-
free coloring problem for hypergraphs: (i) static, (ii) dynamic offline, (iii) dynamic
online with absolute positions, and (iv) dynamic online with relative positions.
Below we define these four models. The relationship among them is shown in
figure 2.

—In the static model, the complete hypergraph G is given, and a conflict-free
coloring for G must be found by the algorithm.

In dynamic models, a sequence {Gt}nt=1 of hypergraphs (with G = Gn) is given
where Gt has t vertices and, for t > 1, Gt−1 is an induced subhypergraph2 of Gt;
for every t a conflict-free coloring for Gt must be found that, for t > 1, extends the
coloring ofGt−1 (i.e., the algorithm can not change colors of vertices). Alternatively,
the input is a permutation of the vertices of the final hypergraph, and Gt, the
hypergraph to be colored at every time step, is the subhypergraph of G induced by
the first t vertices in the permutation.

—In the dynamic offline model, the complete sequence {Gt}nt=1 is given.

In dynamic online models, the sequence {Gt}nt=1 is revealed incrementally, at
discrete time steps t = 1, . . . , n, i.e., at time t, Gt is given, and a color for the new
vertex vt must be found without knowledge of future Gt′ , where t′ > t.

2A hypergraph G = (V ′, E′) is an induced subhypergraph of G = (V,E) if V ′ ⊆ V and E′ =

{e ∩ V ′ | e ∈ E}. We say that G′ is induced by V ′.

ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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Table I. Number of colors used in deterministic algorithms for intervals

model lower bound upper bound

dyn. onl., rel. pos. 1 + 3 log5 n [this paper] O(log2 n) [Fiat et al. 2005]
dyn. onl., abs. pos. 1 + 3 log5 n [this paper] 3dlog3 ne [this paper]

dyn. offline 1 + 3 log5 n [this paper] 1 + log3/2 n [this paper]

static 1 + blog2 nc [Even et al. 2003] 1 + blog2 nc [Even et al. 2003]

Above results scaled to logarithm with base 2 and asymptotically:

model lower bound upper bound

dyn. onl., rel. pos. 1.29 log2 n O(log2 n)

dyn. onl., abs. pos. 1.29 log2 n 1.89 log2 n
dyn. offline 1.29 log2 n 1.71 log2 n

static 1.00 log2 n 1.00 log2 n

—In the dynamic online with absolute positions model, in addition to {Gt}nt=1 being
revealed incrementally, the final Gn = G is given from the start as a vertex-labeled
hypergraph and for each time t, Gt is also given as a vertex-labeled hypergraph,
with the induced subhypergraph isomorphism between Gt and Gn preserving the
labels. This means that the algorithm knows for every new vertex vt where it is
going to lie (i.e., its ‘absolute’ position) in the final hypergraph G.

—In the dynamic online with relative positions model, no information about the
final hypergraph G is given (not even its size n). The only information might
be the structure of the final hypergraph (for example, when we color points on
a line with respect to intervals). Thus, for every new vertex vt, we only know
its ‘relative’ position with respect to already inserted points, by means of the
information in Gt.

From the applications point of view, all models are interesting. In the static
model, all base stations are activated at the same time. The dynamic offline model
captures a scenario where the order of activation of base stations is known from the
start. Additionally, comparison of dynamic online algorithms against algorithms in
the dynamic offline model is more fair than against algorithms in the static model.
The dynamic online with absolute positions model is also motivated, because re-
vealing absolute positions is not unnatural in many scenarios: One can think of
all base stations being at fixed positions, which are known to the algorithm in ad-
vance. This means that the algorithm is aware of the final hypergraph that models
the situation where all base stations are activated. In the start, no base station is
activated. Base stations are constructed or activated one by one, in some order,
in response to increasing network traffic, and thus the order of activation is not
known from the start. Every new station has to be given a color by the algorithm,
such that the conflict-free property is maintained. Finally, the dynamic online with
relative positions model is the one with the fewest restrictions on the adversary and
can capture a situation where the exact positions of new base stations can not be
planned in advance.

In the case of intervals, the four models produce a hierarchy of models, in the
sense that an adversary in a higher model has more power and an algorithm for a
higher model works also for a lower model. A summary of results for deterministic
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algorithms for conflict-free coloring with respect to intervals is given in table I. All
the online algorithms considered so far in the literature work in the relative positions
model. Our main technical results concern two deterministic algorithms that use
2blg(n + 1)c and 3dlog3 ne ≈ 1.89 lg n colors, respectively, in the slightly changed
online model of absolute positions. We only present here the 3dlog3 ne algorithm
and for the other algorithm, we refer the interested reader to [Bar-Noy et al. 2006].
Our deterministic algorithms work against an unrestricted adversary, i.e., they do
not assume the (weaker) oblivious adversary. We also exhibit sequences of length
n = 3k that need at least 1 + 2 log3 n ≈ 1.26 lg n colors in any dynamic model,
and sequences of length n = 5k that need at least 1 + 3 log5 n ≈ 1.29 lg n colors
in any dynamic model. The above lower bound instances are constructed with the
dynamic offline model in mind, but because of the hierarchy, they apply also to the
two dynamic online models, as shown in table I. It is not difficult to also prove
gaps for the lower bounds between the dynamic offline and the absolute positions
models and between the absolute positions and the relative positions models, but
they are constant additive, not constant multiplicative (like the gap in the lower
bound between the static and the dynamic offline models). For the offline model,
we describe an algorithm that uses at most 1 + log3/2 n ≈ 1.71 lg n colors in the
dynamic offline model. In the relative positions model, we resolve an open problem
posed in [Fiat et al. 2005]: We give a tight analysis on the performance of the
first-fit greedy online algorithm (FF), and prove that it uses bn/2c+ 1 colors in the
worst case.

Finally, we discuss coloring with respect to a specific subset of all intervals. One
interesting case is coloring with respect to rays (or halflines), namely the subset of
intervals that contain at least one of the two extreme points. For this case, we show
a strong separation between static and dynamic offline models, in the sense that
in the static model three colors suffice for any n, whereas in the dynamic offline
model blg nc + 1 colors might be necessary. On the other hand, blg (n− 2)c + 3
colors suffice even in the relative positions model.

Paper organization. In section 2, we introduce two ways to describe input to
dynamic and online algorithms in the case of intervals. In section 3, we consider
the dynamic offline model. In section 4, we discuss O(log n) algorithms in the
absolute positions model. In section 5, we analyze the worst-case behavior of the
first-fit greedy algorithm. In section 6, we study conflict-free coloring with respect
to rays. In section 7, we discuss some of the results and mention open problems.

2. PRELIMINARIES

We show two ways to represent inputs for dynamic models, in the intervals case.
We will be using them in subsequent sections.

In the relative positions model, the sequence of points inserted can be described
by the position in which each new point is inserted, relative to previously inserted
points. If i− 1 points have already been inserted, the i-th point can be inserted in
any of i positions described by an integer in the range [0, i − 1]: 0 is for the new
point in the start of the sequence (before any other point), and k > 0 is for the new
point immediately after the k-th already inserted point.

An insertion sequence of length n is represented by a string of n integers, σ,
ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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where 0 ≤ σ(i) ≤ i − 1. If we consider insertion sequences of the same length n

ordered lexicographically, then the first and last elements in that order are: sfirst
n =

[0, 0, 0, . . . , 0], slast
n = [0, 1, 2, . . . , n − 1]. In the relative positions online model, an

insertion sequence is revealed from left to right, one by one, to the online algorithm.
There are n! possible insertion sequences of length n.

In the absolute positions model, initially the algorithm knows the total number
of points to be inserted. Then, for each new point the absolute position of that
point in the final sequence is revealed to the algorithm. The absolute position can
be any number in {1, . . . , n} which has not appeared before. Thus, the input to the
algorithm is a permutation π ∈ Sn that is revealed one by one, from left to right.

In the dynamic offline setting, the input can be given in either absolute or relative
positions, because the two representations are easily convertible to each other if the
whole sequence is known. For example, the insertion sequence σ = 00121 (relative
positions) corresponds to the permutation π = 51342 (absolute positions), which
means the first point inserted is at the 5th absolute position (rightmost), the second
point inserted is at the 1st absolute position (leftmost), and so on.

3. DYNAMIC OFFLINE MODEL

Lower bound. We exhibit insertion sequences that need asymptotically c lg n col-
ors, where c > 1. First, some definitions are needed.

Definition 1. Given a string π of numbers and x ∈ IN, the string (π+x) is defined
by adding x to each element of π, i.e., (π + x)(i) = π(i) + x, for i ∈ {1, . . . , |π|},
where |π| is the length of π.

We also define a sum-like operator for concatenation of strings:
p

©
i=1

si := s1 ◦ · · · ◦ sp .

Permutations can be viewed as strings of numbers. The following definition
proves useful:

Definition 2. Given a permutation π, with |π| = n, and k ∈ IN, the permutation
πk is defined recursively:

π0 = 1 ,

πk+1 =
n

©
i=1

(πk + (π(i) − 1) · nk) .

It is not difficult to prove that if π is a permutation, then indeed πk is also
a permutation. For example, if π = 132, then n = |π| = 3 and π2 = 132798465.
Notice that π2 consists of three π-like components (132, 798, 465), that are inserted
in the π order. In general, πk consists of n πk−1-like components that are inserted
in the π order. We remark that πk should not be confused with concatenation of k
copies of the string π: ©k

i=1 π.

The idea behind our lower bound proofs is to find a permutation π such that for
every k > 0, πk needs y more colors than πk−1, where y is fixed. In the following,
we prove two lower bounds. The first is simpler, it is based on π = 132 (with y = 2),
and gives a 2 log3 n + 1 ≈ 1.26 lg n lower bound. The second is more elaborate, it

ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.



8 · Amotz Bar-Noy et al.

is based on π = 15432 (with y = 3), its proof relies on the previous lower bound,
and it gives a lower bound of 3 log5 n+ 1 ≈ 1.29 lg n.

For every k, we exhibit an insertion sequence πk of absolute positions that has
length n = 3k and needs 2k + 1 = 2 log3 n+ 1 colors to be conflict-free colored.

Proposition 3. For π = 132, input πk needs at least 2k + 1 colors in the dy-
namic model.

Proof. The proof is by induction. For the base case, k = 0, input π0 = 1 needs
one color.

For the inductive step, assume input πk−1 needs at least 2k− 1 colors. Consider
the colorings of the three πk−1 components of πk: A, B, C, in increasing time
order of appearance. Since they are inserted in the 132 order, the πk coloring
incrementally looks like: A, then AB, and finally ACB. By the inductive hypothesis
each of A, B, C uses at least 2k − 1 colors.

Assume, for the sake of contradiction, that ACB uses at most 2k colors. At least
one color that appears in ACB must be unique. If the unique color is in A, then
CB uses at most 2k − 1 colors; if in B, then AC uses at most 2k − 1 colors; if in
C, then AB uses at most 2k − 1 colors. However, all of CB, AC, AB appear at
some point in the coloring of πk: CB and AC appear in ACB, and AB appears just
before the insertion of C. Thus, in each of CB, AC, AB, there must be a unique
color. Now, take J ∈ {CB,AC,AB} that is using at most 2k− 1 colors: This J has
a unique color among the colors used in J , that can only appear in one of the two
πk−1 components of J , therefore, the other πk−1 component of J is using at most
2k − 2 colors; a contradiction.

For every k, we exhibit an insertion sequence πk of absolute positions that has
length n = 5k and needs 3k + 1 = 3 log5 n+ 1 colors to be conflict-free colored.

Proposition 4. For π = 15432, input πk needs at least 3k + 1 colors in the
dynamic model.

Proof. The proof is by induction. For the base case, k = 0, input π0 = 1 needs
one color.

For the inductive step, assume input πk−1 needs at least 3k− 2 colors. Consider
the colorings of the five πk−1 components of πk: A, B, C, D, E, in increasing time
order of appearance. Since they are inserted in the 15432 order, the πk coloring
incrementally looks like: A, AB, ACB, ADCB, and finally AEDCB. By the inductive
hypothesis each of A, B, C, D, E uses at least 3k − 2 colors.

Assume, for the sake of contradiction, that AEDCB uses at most 3k colors. At
least one color that appears in AEDCB must be unique. If the unique color is in
A, then EDCB uses at most 3k − 1 colors; if in B, then AED uses at most 3k − 1
colors; if in C, then AED uses at most 3k − 1 colors; if in D, then ACB uses at
most 3k − 1 colors; if in E, then ACB uses at most 3k − 1 colors. However, all of
EDCB, AED, ACB appear at some point in the coloring of πk. For AED, ACB,
since the πk−1 components are inserted in the 132 order, an argument along the
lines of the proof of proposition 3 gives a πk−1 component using at most 3k − 3
colors; a contradiction. For EDCB, the πk−1 components are inserted in the 4321
order: One of them has a unique color, which leaves at least two consecutive πk−1

ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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`← 1, V 1 ← V , E1 ← E

while V ` 6= ∅ do:

I` ← an independent set of the Delaunay graph of (V `, E`)
color every v in I` with color `

V `+1 ← V ` \ I`

E`+1 ← {e ∩ V `+1 | e ∈ E`}
`← `+ 1

Fig. 3. Algorithm for the dynamic offline model

components using at most 3k−2 colors. Among these two consecutive components,
one of them has a unique color, and thus the other component uses at most 3k− 3
colors; a contradiction.

It is an open problem whether other permutations can improve on the 3 log5 n+1
lower bound. We remark that the above lower bound applies to all three dynamic
models.

Upper bound. The dynamic offline case can be viewed as a static problem, because
dynamically coloring the sequence {Gt}nt=1 is equivalent to statically coloring the
hypergraph G = (V,

⋃n
t=1Et), where Et is the hyperedge set of Gt. In [Even

et al. 2003], a general framework for conflict-free coloring is presented: The authors
provide an algorithm (Algorithm 1 in the paper) that colors the points in iterations.
At the `-th iteration, some points are colored with color ` and these colored points
are not considered in the subsequent iterations. To simplify the presentation, we
do not consider singleton hyperedges, since they are conflict-free colored for free.
The notion of a Delaunay graph is useful:

Definition 5. The Delaunay graph G(H) of the hypergraph H = (V,E) is the
graph (V,D), where the edge set D ⊆ E is the subset of all hyperedges in E of
cardinality two.

We set E =
⋃n

t=1Et, and adapt the framework of [Even et al. 2003] to get the
algorithm in figure 3.

Our algorithm in figure 3 is slightly different from the one in [Even et al. 2003].
When the algorithm in [Even et al. 2003] computes E`+1 from E`, it does not
consider hyperedges for which |e ∩ V `| = 1, since they are for sure conflict-free
colored. On the other hand, our algorithm includes those hyperedges in the next
iteration. We made the above choice because the hypergraph (V `, E`) arises by
inserting the points in V ` in their time order and considering all possible intervals
at each time. With this observation, it is easier to argue about the Delaunay graph
of (V `, E`), and the key to get an efficient conflict-free coloring is to find a big
independent set in the Delaunay hypergraph. Also, it is easier to implement our
algorithm. The correctness of our algorithm is an immediate consequence of the
correctness of the algorithm in [Even et al. 2003], since ours just conflict-free colors
more hyperedges. In order to bound the number of colors used, the following lemma
is needed:

Lemma 6. In the case of intervals, the Delaunay graph of (V `, E`) is 3-colorable.

Proof. Consider the vertices in V ` ordered according to the time of insertion.
Each appearing vertex is immediately adjacent to at most two other vertices, and

ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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thus it can be colored greedily by one of three given colors.

Corollary 7. In a 3-coloring of the Delaunay graph of (V `, E`), the largest
color class is an independent set of size at least d|V `|/3e.

Theorem 8. There is an algorithm that uses at most log3/2 n+ 1 colors in the
dynamic offline model.

Proof. Apply the algorithm in figure 1, where the independent set chosen at
each iteration ` is the largest size color class of any 3-coloring of the Delaunay
graph of (V `, E`). By corollary 7, at each iteration at least d|V `|/3e are colored.
Therefore, the number of iterations (and thus the number of colors) is bounded by
log3/2 n+ 1.

4. ABSOLUTE POSITIONS MODEL

In this section we present an algorithm that uses O(log n) colors in the absolute
positions model. Roughly speaking, a point p with a unique color in an interval
acts as a separator : Points to the left of p and points to the right of p can be
colored independently, and colors can be freely reused. Our algorithm uses only
logarithmic colors by choosing the right points as separators.

In a preliminary version of this paper (see [Bar-Noy et al. 2006]), we presented an
algorithm that chooses the separators in each level and uses recursion to indepen-
dently color the left and the right side of the separators. In this paper we present
an algorithm that adopts the opposite approach of coloring two thirds of the points
with a greedy non-recursive scheme in each level and of coloring the separators by
using the recursion. This algorithm is better in terms of the number of colors it
uses in the worst case.

4.1 An asymptotically 3 log3 n algorithm

We provide a recursive algorithm in the absolute positions model that uses 3dlog3 ne
≈ 1.89 lg n colors to color any input of size n. Triples of points with consecutive
positions play a major role in the algorithm and this is why we call it the ‘triples’
algorithm.

To prove the above bound, it suffices to show a method of conflict-free coloring
any input of size 3k with 3k colors, because, in that case, if 3k−1 < n ≤ 3k then the
algorithm takes the n-sized input, attaches (in any insertion order) 3k − n dummy
points to the right of the n points, solves the 3k-sized instance with the method
to get a conflict-free coloring with 3k colors, and then it discards the colors of the
dummy points to get a conflict-free coloring of the original n points.

If n = 3k, points are colored in k levels that correspond to recursion call levels of
the algorithm and each level uses three colors. At each level ` ∈ {1, . . . , k}, some
of the points are colored and the rest are deferred for coloring at a higher level.
More precisely at each level `, with ` < k, two thirds of the points are colored in
that level and the rest (one third) are deferred. Thus, for each level ` < k of the
recursion, out of the 3k+1−` points that reach the level, 2 · 3k−` are colored in that
level and 3k−` are deferred for coloring in a higher level. The final level k is special
because all three points that reach it are colored in that level. This situation is
shown in table II, where, by convention, level ` uses colors 3`− 2, 3`− 1, and 3`.
ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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Table II. Recursion levels of the triples algorithm

recursion level input size points colored points deferred colors used

1 3k 2 · 3k−1 3k−1 1, 2, 3
. . . . . . . . . . . . . . .

` 3k+1−` 2 · 3k−` 3k−` 3`− 2, 3`− 1, 3`
. . . . . . . . . . . . . . .

k − 1 9 6 3 3k − 5, 3k − 4, 3k − 3

k 3 3 0 3k − 2, 3k − 1, 3k

Now, we describe how the algorithm decides at each level which points to color
and which to defer. At each level `, with ` < k, the algorithm partitions the points
in triples, according to their absolute positions: The three leftmost points are in
the first triple, the second three leftmost points are in the second triple, and so
on, until the final triple which contains the three rightmost points. The decision at
each level ` is made as follows:

For every triple, the first point that is requested to be colored in the
triple is deferred for coloring in a higher level, whereas the other two
points are colored at level `.

Also, for ` < k, the input at level `, which we denote by π〈`〉, induces an input
π〈`+1〉 at level `+ 1 as follows: The absolute positions of triples at level ` give the
absolute positions of points and points at level `+1 are requested in the same order
as the first points of triples at level `. Initially, the input at level 1, i.e., π〈1〉, is
set equal to the original input π. For example, consider the input π = 923745618,
revealed to the online algorithm, one by one element, from left to right. In order to
exhibit better how the algorithm runs, we take the inverse permutation of π, which
maps absolute positions of points to the time they are requested:

π−1 = π−1
〈1〉 = 823 567 491 .

This is the input for level 1 (as denoted by the subscript) and we have also high-
lighted the first (i.e., earliest) point requested in every triple. Input π induces the
following input for level 2: π−1

〈2〉 = 231, or π〈2〉 = 312.
The triples algorithm relies on first-fit greedy coloring, so the following lemma,

which is a special case of lemma 16, proves useful:

Lemma 9. Any conflict-free coloring of x < 4 points, can be extended to a
conflict-free coloring of x + 1 points, with at most three colors, for any position
of the x+ 1-th point, by using the first-fit greedy coloring scheme.

Proof. If the coloring of x points is using less than three colors, then the greedy
scheme introduces at most one new color. If the coloring of x points is using three
colors, then it must be the case that x = 3 and the coloring looks like abc. In that
case, the first-fit greedy scheme can color any new point by reusing the minimum
color among the colors of non-adjacent points to the new point.

Now, we explain how the algorithm colors points in a specific level. If a new
point p is requested that is decided to be colored in level ` (i.e., not deferred for
coloring in a higher level), the algorithm finds the set of all points P already colored
at level ` with the following property: p′ is in P , if there is no point deferred for
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π−1
〈1〉 = 8 2 3 5 6 7 4 9 1

C〈1〉 = 1 ∗ 1 ∗ 1 3 2 1 ∗

π−1
〈2〉 = 2 3 1

C〈2〉 = 5 6 4

C = 1 5 1 6 1 3 2 1 4

Fig. 4. A run of the triples algorithm

coloring in a higher level between p and p′. It can be proved that P contains at most
three points. We defer the proof of the above statement, and include it later in the
proof of the correctness of the algorithm, in proposition 10. The algorithm chooses
the color of p using a greedy coloring scheme, i.e., by choosing the minimum color
possible among 3`−2, 3`−1, and 3`, so that the interval containing P ∪{p} remains
conflict-free (we proved in lemma 9 that this is always possible). The coloring at
each level `, corresponding to input π〈`〉, is denoted by C〈`〉; it is a partial coloring
for ` < k, because only two thirds of the points are colored.

The run of the algorithm on the example input mentioned above is shown in
figure 4. Each ‘∗’ denotes a point that is to be colored in a higher level and C
denotes the final coloring.

For example, the point colored at t = 4 gets color 2 (at level 1), because it is not
the first point that appeared in its triple, and because there is a point requested at
t = 3 which is colored with color 1.

The correctness of the algorithm is immediate from the following result:

Proposition 10. At any time t ∈ {1, . . . , n}, in any interval I of points, there
is a point in I colored with a unique color in I. Moreover, a uniquely colored point
can always be found among the points that were colored in the deepest recursive level
of points in I.

Proof. Recall that the three leftmost points are in the first triple, the second
three leftmost points are in the second triple, and so on, until the final triple which
contains the three rightmost points. At some time t, we say that a triple is empty if
no point of it has yet been requested to be colored. At any time t, take any interval
I and consider the points in I that were colored at the highest level `. If ` = k,
then these are at most three points in I and by lemma 9 there is a unique color in
I. If ` < k, then I can not span a whole non-empty triple in level `, because it will
include a point colored at a level higher than `. Also, I can not span parts of more
than two non-empty triples, because then it would span a whole triple between the
two extreme triples. Thus, I spans at most two triples and at most two points in
each of them (see figure 5). By the description of the algorithm these points are
colored by a greedy scheme with colors from 3` − 2, 3` − 1, and 3`, and thus by
lemma 9 there is a unique color in I.

We have thus established the following theorem:

Theorem 11. There is a deterministic algorithm that uses at most 3dlog3 ne
colors in the dynamic online absolute positions model.
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[ ∗ · · ]

possible empty triplesz }| {
[ · ·| {z }

interval I

∗ ]

Fig. 5. At most four points spanned at level ` < k by I

5. RELATIVE POSITIONS MODEL

In this section, we analyze an algorithm in the relative positions model. The first-
fit greedy algorithm (FF) for online conflict-free coloring for intervals, mentioned
in [Fiat et al. 2005], works as follows: For the next point to color, it chooses the
minimum color that maintains the conflict-free coloring property. For example,
the first-fit greedy algorithm colors insertion sequence σ = 010322 (π = 251643
in absolute positions) as follows: [ .1 . . . . ], [ .1 . .2 . ], [21 . .2 . ], [21 . .23], [21 .323],
[214323]. We have the following tight result for FF:

Theorem 12. For n ≥ 2, the worst-case number of colors used by FF for inputs
of length n is dn/2e+ 1.

In order to establish the above result, we prove a lower bound for FF and a
matching upper bound.

Lower bound for FF. There are sequences which force the FF algorithm to use
O(n) colors: We prove that sequence 00(20)i1, of length 2i + 3, uses i + 3 colors.
The following lemma is needed:

Lemma 13. Insertion sequence 00(20)i uses i + 2 colors and the two leftmost
colors in the coloring are i+ 2, i+ 1. The third and fourth leftmost colors, in case
i > 0 are i, i+ 1.

Proof. By induction. Base case (i = 0 and 1): Insertion sequence 00 gives the
coloring 21 and insertion sequence 0020 gives the coloring 3212.

For the inductive step, by the inductive hypothesis, the coloring for i > 0 is:

ci = i+ 2 i+ 1 i i+ 1 . . .

The next insertion (at relative position 2) is between i+ 1 and i. The new point
can not get color i or i + 1, because there are adjacent points colored with those
colors. It has to get color i+ 2, because if it would get another smaller color, then
this color could also be used as the color occurring in the leftmost point of ci. The
coloring becomes:

i+ 2 i+ 1 i+ 2 i i+ 1 . . .

The next insertion (at relative position 0) can not get a color among i+ 2, i+ 1, i.
It can not get any other already used color, because then this color could also be
used as the color occurring in the leftmost position of ci. So, a new color has to be
used and thus:

ci+1 = i+ 3 i+ 2 i+ 1 i+ 2 . . .

Lemma 14. Insertion sequence 00(20)i1 uses i+ 3 colors.
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Proof. From lemma 13, the coloring of 00(20)i is:

i+ 2 i+ 1 . . .

The insertion (at relative position 1) between colors i+2 and i+1 has to get a new
color, because any other color, except i+2 which is in any case impossible (because
of adjacency), would be chosen by the FF algorithm when coloring 00(20)i, in the
last insertion.

This establishes the following lower bound on the number of colors used by FF:

Proposition 15. For every n ≥ 2, there are insertions sequences of length n
that force the first-fit greedy algorithm to use dn/2e+ 1 colors.

Upper bound for FF. In order to prove an upper bound on the number of colors
used by the FF algorithm, we consider uniquely occurring colors in a coloring.

Lemma 16. In any FF coloring there are at most three distinct colors with the
following property: each of these colors occurs exactly once.

Proof. Assume the three colors x, y, z that occur uniquely in a coloring by FF:

. . . x . . . y . . . z . . .

If the new point is inserted to the left of y, then z is an eligible color. If the new
point is inserted to the right of y, then x is an eligible color. In any case, FF will
introduce no new color for the new point, since FF chooses the minimal eligible
color.

We remark that we can have 1, 2, or 3 uniquely occurring colors in a coloring by
FF, as exhibited by the insertion sequence σ = 011 which is colored as 132 by FF.

Proposition 17. For n ≥ 2: No insertion sequence of length n forces the first-
fit greedy algorithm to use more than dn/2e+ 1 colors.

Proof. Consider a coloring by FF of n points. If k colors are used and u of them
occur uniquely, then k−u colors occur at least as duplicates, and n ≥ 2(k−u) +u,
which gives 2k ≤ n+ u and since k is integer:

k ≤
⌊
n+ u

2

⌋
≤
⌊
n+ 3

2

⌋
=
⌈
n

2

⌉
+ 1 ,

because u ≤ 3 (by lemma 16).

Theorem 12 follows immediately from propositions 15 and 17.

Remark 18. The upper bound technique for FF can also be applied to the unique
max algorithm (UM), a simple algorithm that is used as a component in other more
elaborate algorithms, including the O(log2 n) algorithm of [Fiat et al. 2005]. Our
technique gives an upper bound of dn/2e+ 2 for the number of colors used by UM.
However, in contrast to the tight analysis for FF, only insertion sequences that
force UM to use Θ(

√
n) colors have been found (see [Fiat et al. 2005]).

ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.



Deterministic Conflict-Free Coloring for Intervals · 15

6. COLORING WITH RESPECT TO A SUBSET OF THE SET OF ALL INTERVALS

We relax the conflict-free coloring problem of intervals as follows. Instead of the
requirement that all intervals need to have a uniquely colored point, it is required
that the conflict-free condition holds only for intervals in a specific subset of the
set of all intervals. Examples are coloring with respect to all intervals of a specific
length, say k, or all intervals of length up to k. Recently, the problem has been
also studied by Katz et al. [2007].

Another interesting case arises from the intervals that contain either of the two
extreme points. Equivalently, these are intervals that are defined by halflines (infi-
nite intervals), or rays. We therefore refer to the problem as conflict-free coloring
with respect to rays. The motivation for considering this restricted subset comes
from agents whose movement range is not strictly inside the line segment between
the two extreme points. We also want to point out how different are the results
and the gaps between models, related to the all intervals case.

For n points there are 2n−1 ray defined intervals, of which n contain the leftmost
point and are called prefix intervals and n contain the rightmost point and are
called suffix intervals (the interval containing all points is both a prefix and a suffix
interval).

In the static model, the coloring 133 . . . 332 (i.e., color the extreme points with
unique colors and use the same color for all non-extreme points) suffices for all n
and uses three colors. It is not hard to see that three colors are required for n ≥ 4
(for n = 3 the coloring 121 with two colors is a conflict-free coloring).

To analyze the problem in the dynamic models, we consider first coloring with
respect to prefix intervals only (the suffix case has the same bounds, because it is
symmetric). In the static model for prefixes, the coloring 122 . . . 22 is a conflict-free
coloring with 2 colors. Obviously, this coloring is optimal. In the dynamic models
for prefixes, we will first prove a lower bound of 1 + blg nc already for the dynamic
offline model and then provide an algorithm using 2 + blg(n− 1)c colors already in
the relative position model.

Proposition 19. In the dynamic (offline) model, input σ = 0n needs 1 + blg nc
colors to be conflict-free colored with respect to prefixes.

Proof. The i-th point inserted is always at the left of all previously inserted
points and thus contributes i new intervals. In fact, by viewing the dynamic problem
as a static problem (as we did in the upper bound discussion of section 3), it can
be proved that coloring 0n with respect to prefixes is equivalent to coloring n
points statically with respect to (all) intervals. Thus, at least 1 + blg nc colors are
needed.

We propose the following algorithm for coloring prefixes: The algorithm colors
differently

(a) points that appear to the left of all previously inserted points,
(b) points that appear to the right of at least one previously inserted point.

The first group of points contains points for which σ(i) = 0, and the second group
points for which σ(i) > 0. Therefore, it is possible to distinguish between the two
groups even in the relative positions model. Points in the first group are colored
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Table III. Number of colors used in deter-

ministic algorithms for rays (n ≥ 3)

model lower bound upper bound

all dynamic 1 + blgnc 3 + blg(n− 2)c
static 3 3

according to the static coloring for intervals: . . . 41213121. Points in the second
group are all colored with the same color, which is different from the colors used
in the first group. For example, input σ = 010120020 is colored as 131?2??1?,
where ‘?’ is the color used for points in the second group. It is not difficult to see
that subsets of points which must have the conflict-free property never contain a
‘?’-colored point as their leftmost point. Thus, every subset of points that must
be conflict-free colored contains a point of the first group. Additionally, every such
subset contains points with consecutive positions in the first group, and is therefore
conflict-free colored. If the input is 0n, exactly 1+blg nc colors are used. Otherwise,
at least one point is ‘?’-colored and at most n−1 points are in the first group, which
implies that at most 2 + blg(n− 1)c are used. We have just proved the following:

Proposition 20. For n ≥ 2, there is an algorithm that conflict-free colors with
respect to prefixes any insertion sequence σ (in the relative positions model) with at
most 2 + blg(n− 1)c colors.

Finally, we use the upper bound for prefixes (and suffixes) to prove an upper
bound for rays. We claim that for dynamically coloring with respect to rays, one
more color than the prefix (or suffix) case suffices. The idea is to use a unique color
for the first point p inserted, and then color independently points to the left of p
from points to the right of p: color whatever is inserted to the left of p with respect
to prefixes and whatever is inserted to the right of p with respect to suffixes. From
the above, it is not hard to prove:

Proposition 21. For n ≥ 3, there is an algorithm that conflict-free colors with
respect to rays any insertion sequence σ (in the relative positions model) with at
most 3 + blg(n− 2)c colors.

The above analysis gives a separation between static and dynamic models for
coloring with respect to rays: The number of colors used is a logarithmic factor
apart. All the results are shown in table III. This is in contrast with the all-
intervals case in which the separation result between static and dynamic offline
model is weaker, just a constant factor apart, 1 + lg n and 1 + log3/2 n colors used,
respectively.

7. DISCUSSION AND OPEN PROBLEMS

We introduced a hierarchy of models for conflict-free coloring ranging from a com-
pletely static model (weakest adversary model) to a fully online model (strongest
adversary model). We concentrated on deterministic conflict-free coloring with re-
spect to intervals. For this special case, we proposed algorithms for some of the
models and gave upper bounds on their worst-case performance. We also provided
lower bounds on the number of colors used in some models.
ACM Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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There are still gaps between lower and upper bounds (see table I). For example,
in the dynamic offline model the lower bound is 1 + 2 log3 n ≈ 1.26 lg n, whereas
the upper bound is 1 + log3/2 n ≈ 1.71 lg n, a constant factor apart. The situation
is similar in the absolute positions model where the upper bound is approximately
1.89 lg n. The most important open problem is narrowing the gap between lower and
upper bound in the relative positions model: Ω(log n), and O(log2 n), respectively,
which are a logarithmic factor apart.

So far in the literature, only the static and the fully online (relative positions)
models had been considered. If there is a gap on the number of colors used between
these two extreme models, the hierarchy can help pin-point exactly where the ‘jump’
occurs, and thus give a better understanding of the problem. In the case of all-
intervals, static uses O(log n) and the best known online deterministic algorithm
O(log2 n) colors, but this logarithmic factor ‘jump’ is not a result of the online
model, because it occurs just between the absolute positions model and the fully
online (relative positions) model. However, in the rays case, a logarithmic factor
jump occurs between the static and the dynamic offline model.

In the dynamic online absolute positions setting, it is natural for the algorithm
to know the total number n of points that will be inserted from the start. The
triples algorithm exploits that knowledge to achieve O(log n) colorings. However,
in the triples algorithm, for final size of input n = 3k, the adversary can request
the first k points in such a way such that the algorithm uses k different colors. An
open problem in the absolute positions model is to maintain an O(log k) coloring
after the first k points have been inserted for all k with 0 < k ≤ n.

Finally, the hierarchy of models is not constrained to problems for points on the
real line. It can be used in conflict-free coloring for hypergraphs, in general. A
possible use of the hierarchy would be to understand better conflict-free coloring
problems in the plane, or even higher dimensions.
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