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abstract

conflict-free coloring

by

panagiotis cheilaris

Advisers: Amotz Bar-Noy, János Pach, Stathis Zachos

Graph and hypergraph colorings constitute an important subject in com-

binatorics and algorithm theory. In this work, we study conflict-free col-

oring for hypergraphs. Conflict-free coloring is one possible generalization

of traditional graph coloring. Conflict-free coloring hypergraphs induced by

geometric shapes, like intervals on the line, or disks on the plane, has applica-

tions in frequency assignment in cellular networks. Colors model frequencies

and since the frequency spectrum is limited and expensive, the goal of an

algorithm is to minimize the number of assigned frequencies, that is, reuse

frequencies as much as possible.

We concentrate on an online variation of the problem, especially in the

case where the hypergraph is induced by intervals. For deterministic algo-

rithms, we introduce a hierarchy of models ranging from static to online and

we compute lower and upper bounds on the numbers of colors used.

In the randomized oblivious adversary model, we introduce a framework

for conflict-free coloring a specific class of hypergraphs with a logarithmic

iii



number of colors. This specific class includes many hypergraphs arising in

geometry and gives online randomized algorithm that use fewer colors and

fewer random bits than other algorithms in the literature. Based on the

same framework, we initiate the study of online deterministic algorithms

that recolor few points.

For the problem of conflict-free coloring points with respect to a given set

of intervals, we describe an efficient algorithm that computes a coloring with

at most twice the number of colors of an optimal coloring. We also show

that there is a family of inputs that force our algorithm to use two times the

number of colors of an optimal solution.

Then, we study conflict-free coloring problems in graphs. We compare

conflict-free coloring with respect to paths of graphs to a closely related

problem, called vertex ranking, or ordered coloring. For conflict-free coloring

with respect to neighborhoods of vertices of graphs, we prove that number

of colors in the order of the square root of the number of vertices is sufficient

and sometimes necessary.

Finally, we initiate the study of Ramsey-type problems for conflict-free

colorings and compute a van der Waerden-like number.
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Chapter 1

Introduction

In this chapter, we introduce the object of study of this work. Then, we

review the literature. Finally, we describe in short the new results of this

work.

1.1 Graphs, hypergraphs, and colorings

We define the main objects of this work, which are graphs and hypergraphs.

Especially for graph theory, we follow the terminology of Bollobás [1998],

Diestel [2005].

Definition 1.1. A graph G is an ordered pair (V,E), consisting of the vertex

set (or ground set) V and the edge set E, where E is a set of two-element

subsets of V .

More precisely, this type of graph is called undirected and simple, to

1
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differentiate it from graphs where edges have a direction, or edges may have

multiplicities. In this work, we are going to be concerned only with undirected

simple graphs, that we just call graphs. The vertex set of a graphG is denoted

by V (G) and its edge set by E(G). We usually denote the cardinality of the

aforementioned sets with n = |V (G)| and m = |E(G)|, respectively.

A hypergraph is a generalization of a graph in which the edge set, now

called hyperedge set, consists of hyperedges, where each hyperedge is a non-

empty subset of the underlying vertex set. The formal definition follows.

Definition 1.2. A hypergraph H is an ordered pair (V,E), consisting of the

vertex set V and the hyperedge set E, where E is a set of subsets of V .

If all hyperedges in a hypergraph have the same cardinality k, then we say

the hypergraph is k-uniform. Therefore, a graph is a 2-uniform hypergraph.

The vertex set of a hypergraph H is denoted by V (H) and its hyperedge set

by E(H). A hypergraph is also called a set system or a family of sets.

In this work, we are going to consider only graphs and hypergraphs for

which the underlying vertex set is finite.

Vertex colorings are assignments of values to vertices of a graph or hyper-

graph. We call these values colors. Usually, we want them to satisfy some

property.

Definition 1.3. A (traditional) vertex coloring of a graph G = (V,E) is a

function C : V → N+ such that adjacent vertices are colored with different
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colors. Formally,

(∀{v, v′} ∈ E)(C(v) 6= C(v′)).

The minimum k for which there is a (traditional) vertex coloring of G

with k colors is called the chromatic number of G, denoted by χ(G).

Vertex coloring in hypergraphs can be defined in many ways, so that re-

stricting the definition to simple graphs coincides with traditional graph col-

oring. At one extreme, it is only required that the vertices of each hyperedge

are not all colored with the same color (except for singleton hyperedges).

Definition 1.4. A non-monochromatic vertex coloring of hypergraph H =

(V,E) is a function C : V → N+ such that

(∀e ∈ E)(∃v ∈ e)(∃v′ ∈ e)(|e| = 1 ∨ C(v) 6= C(v′)).

The minimum k for which there is a non-monochromatic vertex coloring

of H with k colors is called the chromatic number of H, usually denoted by

χ(H).

At the other extreme, we can require that the vertices of each hyperedge

are all colored with different colors.

Definition 1.5. A colorful or rainbow vertex coloring of hypergraph H =

(V,E) is a function C : V → N+ such that

(∀e ∈ E)(∀v ∈ e)(∀v′ ∈ e)(v 6= v′ → C(v) 6= C(v′)).
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Between these two extremes, there is another possible generalization: A

vertex coloring C of hypergraph H is called conflict-free if the vertices of

each hyperedge are colored in such a way that there is a vertex whose color

is unique in the hyperedge.

Definition 1.6. A conflict-free vertex coloring of hypergraph H = (V,E) is

a function C : V → N+ such that

(∀e ∈ E)(∃v ∈ e)(∀v′ ∈ e)(v′ 6= v → C(v′) 6= C(v)).

If an edge has a uniquely colored vertex, we say that this edge satisfies

the conflict-free property.

The minimum k for which there is a conflict-free vertex coloring of H

with k colors is called the conflict-free chromatic number of H, denoted by

χcf(H).

Remark 1.7. It is not difficult to see that all three aforementioned colorings

coincide with traditional graph coloring for 2-regular hypergraphs.

Conflict-free colorings of hypergraphs are the main subject of this work.

1.2 Motivation and related work

1.2.1 Conflict-free coloring

Conflict-free coloring models frequency assignment for cellular networks. A

cellular network consists of two kinds of nodes: base stations and mobile
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agents. Base stations have fixed positions and provide the backbone of the

network; they are modeled by vertices in V . Mobile agents are the clients of

the network and they are served by base stations. This is done as follows:

Every base station has a fixed frequency; this is modeled by the coloring C,

i.e., colors represent frequencies. If an agent’s device needs to establish a link

with a base station it has to tune itself to this base station’s frequency. Since

agents are mobile, they can be in the range of many different base stations.

The range of communication of every agent is modeled by a hyperedge e ∈ E,

which is the set of base stations that can communicate with the agent. To

avoid interference, the system must assign frequencies to base stations in the

following way: For any range, there must be a base station in the range with

a frequency that is not reused by some other base station in the range. This

is modeled by the conflict-free property.

One can solve the problem by assigning n different frequencies to the n

base stations. However, using many frequencies is expensive, and therefore, a

scheme that reuses frequencies, where possible, is preferable. For more details

on frequency assignment problems, in general, see Aardal et al. [2001].

The aforementioned problem is formalized in the following. The set of

points and the family of shapes given in the following definition can lie in

any space, but usually we consider the plane.

Definition 1.8. Given a set P of n points and a family F of geometric

shapes, we say that the hypergraph H = (P,E) is induced by P and F if:
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A subset S ⊆ P is a hyperedge in E if and only if S = P ∩Q for

some Q ∈ F .

The hypergraphs induced as above are called geometric hypergraphs. Pos-

sible families of shapes are

• all closed disks (in the plane),

• all unit disks (disks of unit radius),

• all halfplanes, etc.

When we conflict-free color the hypergraph induced by P and F , we say

that we conflict-free color P with respect to family F . Therefore, in the

aforementioned examples, we say that we conflict free color a set of points

with respect to

• all closed disks (in the plane), or

• all unit disks (disks of unit radius), or

• all halfplanes, etc.

Remark 1.9. Although family F can be infinite, since set P is finite, the

hyperedge set is finite and its cardinality is bounded by 2|P |. The motivation

for considering a family of shapes such as all disks comes from the moving

agents. Usually, a range of an agent can be modeled by a disk in the plane,

and the agent could be anywhere in the plane. Different agents could have

ranges of the same shape, but differ in communication radii (taking into
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account different communication equipment), and therefore all disks in the

plane can be viewed as possible ranges. If, however, all agents have the

same communication equipment with the same communication radius, then

all disks with some fixed radius could be considered as possible ranges (for

example, unit disks after a proper scaling).

A conflict-free coloring of five points in the plane with respect to disks is

shown in figure 1.1. It uses three colors and it is not difficult to see that it

is optimal.

2 1

3

1 2

Figure 1.1: A conflict-free coloring of five points with respect to disks in the
plane

The study of conflict-free colorings originated in the work of Even et al.

[2003] and Smorodinsky [2003]. In addition to the practical motivation de-

scribed above, this new coloring model has drawn much attention of re-

searchers through its own theoretical interest and such colorings have been

the focus of several recent papers (see, e.g., Even et al. [2003], Smorodin-

sky [2003], Pach and Tóth [2003], Har-Peled and Smorodinsky [2005], Fiat

et al. [2005], Elbassioni and Mustafa [2006], Chen et al. [2006], Alon and

Smorodinsky [2006], Bar-Noy et al. [2006, 2008], Chen et al. [2007], Cheilaris

[2006], Cheilaris et al. [2006], Bar-Noy et al. [2007a], Ajwani et al. [2007],
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Bar-Noy et al. [2007b,c,d], Smorodinsky [2007], Katz et al. [2007], Keszegh

[2007], Chen et al. [2008], Chan et al. [2008]).

Even et al. [2003] also defined a dual conflict-free coloring problem, which

can also model frequency assignment in cellular networks. They used a hy-

pergraph defined as follows.

Definition 1.10. Given is a set R of n geometric shapes, called a range

space. For every point p in the union of shapes in R, define R(p) ⊆ R to be

the set of shapes that contain p, i.e., R(p) = {r ∈ R | p ∈ r}. We say that

the hypergraph H = (R, E) is induced by range space R if:

A subset S ⊆ R is a hyperedge in E if and only if there exists a

point p ∈
⋃
r∈R r such that R(p) = S.

When we conflict-free color the hypergraph induced by R, we say that

we conflict-free color R. Typical, examples of R are sets of disks, sets of unit

disks, sets of axis-parallel rectangles, etc. In figure 1.2, we show a conflict-free

coloring of six disks in the plane with three colors (which is optimal).

The shapes inR model the range of n base stations, also referred to as an-

tennas. A moving agent that is at point p is under the influence of antennas

in R(p). To avoid interference, there must be an antenna in R(p) assigned

a unique frequency among the antennas in R(p). If we model frequencies

with colors, this is achieved with a conflict-free coloring of the hypergraph

induced by R. Assume, for simplicity, that the area covered by a single an-

tenna is given as a disk in the plane. Namely, the location of each antenna
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3

1

2

1 1

1

Figure 1.2: A conflict-free coloring of six disks in the plane

and its radius of transmission is fixed and is given (the transmission radii

of the antennas are not necessarily equal). Even et al. [2003] showed that

one can find an assignment of frequencies to the antennas with a total of

at most O(log n) frequencies such that each antenna is assigned one of the

frequencies and the resulting assignment is free of conflicts, in the preceding

sense. It was also shown that this bound is worst-case optimal. Thus, Even

et al. [2003] showed that any hypergraph induced by a family R of n disks

in the plane admits a conflict-free coloring with only O(log n) colors and

that this bound is tight in the worst case. Furthermore, such a coloring can

be found in deterministic polynomial time. Even et al. [2003] showed that

finding the minimum number of colors needed to conflict-free color a given

collection of disks is NP-hard even when all disks are congruent, and pro-

vided a O(log n) approximation-ratio algorithm. The results of Even et al.

[2003] were further extended in Har-Peled and Smorodinsky [2005] by com-
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bining more involved probabilistic and geometric ideas. The main result of

Har-Peled and Smorodinsky [2005] is a general randomized algorithm which

conflict-free colors any set of n ‘simple’ regions (not necessarily convex) whose

union has ‘low’ complexity, using a ‘small’ number of colors.

To capture a dynamic scenario where antennas can be added to the net-

work, Fiat et al. [2005] initiated the study of online conflict-free coloring of

hypergraphs. The subject of online algorithms is important in computer sci-

ence and very rich. An online computation models a situation in which an

algorithm has to process an input piece-by-piece, making irrevocable deci-

sions, without having the whole input available from the start. Usually, the

performance of an online algorithm is measured against the performance of

the best offline algorithm, namely an algorithm that knows the whole input

from the start. In an anthropomorphic point of view, given an online algo-

rithm, an adversary chooses the input in such a way that the performance

of the online algorithm is as far as possible from the performance of the

best offline algorithm. For more details, see the standard textbook on online

algorithms by Borodin and El-Yaniv [1998].

Fiat et al. [2005] considered a very simple hypergraph H with a set P of

n points on the line as its vertex set and the set of all intersections of the

points with some interval as its hyperedge set. The set P ⊂ R is revealed by

an adversary online: Initially, P is empty, and the adversary inserts points

into P , one point at a time. Let P (t) denote the set P after the t-th point

has been inserted. Each time a point is inserted, the algorithm needs to
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assign a color C(p) to it, which is a positive integer. Once the color has been

assigned to p, it cannot be changed. The coloring must remain conflict-free

at all times. That is, for any interval I that contains points of P (t), there is a

color that appears exactly once in I. Among other results, Fiat et al. [2005]

provided a randomized algorithm for online conflict-free coloring n points on

the line with O(log n log log n) colors, with high probability. Their algorithm

assumes that the adversary is oblivious in the sense that it does not have

access to the random coin flips of the algorithm. The notion of an oblivious

adversary was introduced by Raghavan and Snir [1989]. Fiat et al. [2005] also

provided a deterministic algorithm for online conflict-free coloring n points

on the line with Θ(log2 n) colors in the worst case. This is the best known

deterministic algorithm in terms of the number of colors used.

Chen [2006] and Chen et al. [2007] provided a randomized algorithm in

the oblivious adversary model that uses at most O(log n) colors, with high

probability. The algorithms in the aforementioned papers use number of

random bits linear in n.

For conflict-free coloring of n points with respect to (closed) disks, Pach

and Tóth [2003] proved a lower bound of Ω(log n) colors. They also gener-

alized the result to homothetic copies of any convex body (i.e., scaled and

translated, but not rotated copies of a fixed convex body). Har-Peled and

Smorodinsky [2005] gave a conflict-free coloring of n points with respect

to axis-parallel rectangles that uses O(
√
n) colors. Pach and Tóth [2003]

improved this to O(
√
n log log n/ log n). Elbassioni and Mustafa [2006] con-
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sidered an interesting variation of the problem of conflict-free coloring points

with respect to axis-parallel rectangles: They proved that given any set of

n points in the plane, one can add O(n1−ε) new points, so that all points

can be conflict-free colored with Õ(n3(1+ε)/8) colors; in the Õ notation poly-

logarithmic factors are ignored. Based on Elbassioni and Mustafa [2006],

Ajwani et al. [2007] proved that any set of n points can be conflict-free col-

ored in expected polynomial time, with respect to axis-parallel rectangles,

using Õ(n0.382+ε) colors, for any arbitrarily small ε > 0. Although there are

only polylogarithmic lower bounds for conflict-free coloring with respect to

axis-parallel rectangles, the work of Chen et al. [2008] indicates that the real

answer is closer to the upper bound of Ajwani et al. [2007].

Alon and Smorodinsky [2006] considered coloring a collection of n disks

in which each disk intersects at most k others so that for each point p in the

union of all disks there is at least one disk in the collection containing p whose

color differs from that of all other members of the collection that contain p

(this is the dual problem of coloring points with respect to ranges). They

managed to use just O(log3 k) colors; their proof relies on the probabilistic

method [Alon and Spencer, 2000], and especially the Lovász local lemma

[Erdős and Lovász, 1975].

Smorodinsky [2006] and Smorodinsky [2007] studied non-monochromatic-

edge coloring of hypergraphs that are induced by regions bounded by simple

Jordan curves. He applied the aforementioned results to conflict-free coloring

of regions with near linear union complexity (using a polylogarithmic number



panagiotis cheilaris conflict-free coloring 13

of colors), and axis-parallel rectangles (using O(log2 n) colors).

Katz et al. [2007] studied the problem of conflict-free coloring points on

the line with respect to a given set of intervals. They claim a polynomial time

algorithm that computes a solution that uses at most four times the number

of colors of an optimal solution, i.e., it is a 4-approximation algorithm. For

more on approximation algorithms, see Vazirani [2001].

1.2.2 Unique maximum property

We define a stronger property that implies the conflict-free property.

Definition 1.11. A unique maximum vertex coloring of hypergraph H =

(V,E) is a function C : V → N+ such that

(∀e ∈ E)(∃v ∈ e)(∀v′ ∈ e)(v′ 6= v → C(v′) < C(v)).

Namely, a unique maximum coloring is a conflict-free coloring with the

additional property that in every hyperedge one of the uniquely occurring

colors in the vertex is also the maximum one. The minimum k for which

there is a unique maximum vertex coloring of H with k colors is called the

unique maximum chromatic number of H and is denoted by χum(H).

In the literature, most conflict-free coloring algorithms are in fact unique

maximum coloring algorithms. For example, the main conflict-free coloring

algorithm used by Even et al. [2003] is a unique maximum algorithm. In

general, it seems that arguing about unique maximum colorings is easier
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than arguing about conflict-free colorings, maybe because of their additional

structure.

1.2.3 Path-related vertex colorings of graphs

Ordered colorings

So far, the hypergraphs we considered were induced by geometric shapes.

Now, we consider a hypergraph induced by (simple) paths in a graph. First,

we define the notion of a (simple) path.

Definition 1.12. A path in a graph is a sequence v0, e1, v1, . . . , e`, v`, where

for every i, with 1 ≤ i ≤ `, ei = {vi−1, vi}. We say that the aforementioned

path has length `.

In most cases, we omit the edges from the sequence, and we denote the

aforementioned path just with v0, v1, . . . , v`.

Definition 1.13. Given a graph G = (V,E), we say that the hypergraph

H = (V,E ′) is induced by the paths of graph G if:

A subset P ⊆ V is a hyperedge in E ′ if and only if P is the set

of vertices in some path of G.

Now, we define a special vertex coloring of G.

Definition 1.14. An ordered coloring of G is a unique maximum coloring

of the hypergraph induced by paths of G.



panagiotis cheilaris conflict-free coloring 15

We can also give an equivalent, direct definition.

Definition 1.15. An ordered coloring of G is a function C : V (G) → N+

such that in every path of G the maximum color occurring in the path occurs

uniquely in the path. The minimum k such that a graph G has an ordered

coloring with k colors is called the ordered chromatic number of G and is

denoted by χo(G).

Ordered coloring has been studied by Katchalski et al. [1995]. Some

authors, like [Iyer et al., 1988] call it alternatively vertex ranking. Vertex

ranking has many applications. One application is in the field of VLSI de-

sign [Leiserson, 1980, Sen et al., 1992]. Another application is in the field

of parallel Cholesky factorization of matrices [Duff, 1986, Liu, 1986, George

et al., 1987, Liu, 1989]. In general graphs, finding the exact ordered chromatic

number of a graph is NP-complete [Llewellyn et al., 1989, 1993]. Approx-

imability results are given by Bodlaender et al. [1995]. The vertex ranking

problem is also interesting for the Operations Research community, because

it also has applications in planning efficient assembly of products in manu-

facturing systems [Iyer et al., 1988, Schäffer, 1989]. In general, it seems the

vertex ranking problem can model situations where interrelated tasks have

to be accomplished fast in parallel, with some constraints (assembly from

parts, parallel query optimization in databases, etc.).

Ordered colorings with few colors have been found in several families of

graphs. For tree graphs, the notion of a (1/2)-separator [Jordan, 1869, Lewis

II et al., 1965, Erlebach et al., 2003] is useful. A (1/2)-separator is a vertex
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which, when removed, leaves connected components whose size is bounded

by n/2. It can be proven that χo(T ) ≤ 1 + blog2 nc for a tree with n vertices

and this is tight for some families, like paths. See, for example, Katchalski

et al. [1995]. Moreover, one can find efficiently optimal ordered colorings of

trees [Iyer et al., 1988], even in linear time [Schäffer, 1989]. For a planar

graph G, using separator theorems [Lipton and Tarjan, 1979, Djidjev, 1982],

it can be proven that χo(G) ≤ 3(
√

6 + 2)
√
n ≈ 13.3485

√
n [Katchalski et al.,

1995].

Square-free colorings

We obtain another related problem by looking at colorings of paths as strings.

We impose the following restriction: Every coloring of a path, when viewed

as a string, shall not contain a repetition. Formally, a string w ∈ (N+)∗ is

called square-free if there is no substring of w of the form x2 = xx, where x

is a nonempty string. Given a coloring C of the vertices of a graph, for every

path p = v1 . . . v`, we define the color string of p to be C(v1) . . . C(v`).

Definition 1.16. A square-free coloring of G is a function C : V (G) → N+

such that for every path in the graph its color string is square-free.

The minimum k for which a graph G has a square-free coloring with k

colors is called the square-free chromatic number of graph G and is denoted

by χsf(G).

Every ordered coloring is square-free, because a path whose color string

is a square implies a repetition of the maximum color in the path. Every



panagiotis cheilaris conflict-free coloring 17

square-free coloring is a traditional coloring, because traditional colorings can

be seen as colorings with no square color strings of length two. Therefore, we

have the hierarchical inclusion relation between colorings of graphs, shown

in figure 1.3.

traditional colorings

↑
square-free colorings

↑
ordered colorings

Figure 1.3: An inclusion hierarchy of graph colorings

Restating the aforementioned inclusions in terms of chromatic numbers,

we have the following.

Proposition 1.17. χ(G) ≤ χsf(G) ≤ χo(G).

Square-free coloring a graph might require a lot fewer colors than ordered

coloring. For example, a seminal result by Thue [1906] shows that three

colors suffice to square-free color any path Pn. In contrast, ordered colorings

of Pn require Ω(log n) colors. Another name for square-free colorings (of

graphs) is non-repetitive colorings. Non-repetitive colorings of graphs have

been recently studied by Alon et al. [2002], Brešar et al. [2007], Barát and

Wood [2005]. Another related class of colorings consists of cube-free colorings,

where color strings of paths can not contain a x3 substring, for x non-empty.

It is known from Thue [1906], and also implicitly from Prouhet [1851], that
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two colors suffice to cube-free color any path Pn. Square-free, cube-free, and

related colorings have been studied extensively for strings (i.e., for the path

graph in our setting). For more details, see the book by Allouche and Shallit

[2003].

1.3 Contributions

In chapter 2, we investigate deterministic algorithms for online conflict-free

coloring points with respect to intervals. We introduce a hierarchy of four

models for the above problem: (i) static, (ii) dynamic offline, (iii) dynamic

online with absolute positions, (iv) dynamic online with relative positions.

We show that the hierarchy is strict. In the dynamic offline model, we give

a deterministic algorithm that uses at most log3/2 n + 1 ≈ 1.71 log2 n colors

and exhibit inputs that need at least 3 log5 n+1 ≈ 1.29 log2 n colors. For the

online absolute positions model, we give a deterministic algorithm that uses

at most 3dlog3 ne ≈ 1.89 log2 n colors. This is the best known deterministic

online algorithm using O(log n) colors, in a non-trivial deterministic online

model.

We also consider conflict-free coloring with respect to intervals that con-

tain at least one of the two extreme points, i.e., conflict-free coloring with

respect to rays (or halflines). This is the one-dimensional version of coloring

points in the plane with respect to halfplanes.

In chapter 3, we provide a framework for online conflict-free coloring any
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hypergraph. We define the notion of a k-degenerate hypergraph. We use this

framework to obtain an efficient randomized online algorithm for conflict-free

coloring any k-degenerate hypergraph. Our algorithm uses O(k log n) colors

with high probability and this bound is asymptotically optimal, because there

are families of k-degenerate hypergraphs that need that many colors. More-

over, our algorithm uses O(k log k log n) random bits with high probability.

As a corollary, we obtain asymptotically optimal randomized algorithms for

online conflict-free coloring some hypergraphs that arise in geometry. Our

algorithm uses exponentially fewer random bits compared to previous algo-

rithms (expectedly logarithmic in n compared to linear in n).

We introduce deterministic online conflict-free coloring algorithms for

points on the line with respect to intervals and for points in the plane with

respect to halfplanes (or unit disks) that use O(log n) colors and performs

only O(n) recolorings.

Chapter 4 contains several other results of ours on conflict-free coloring.

First, as a variation of conflict-free coloring with respect to (all) intervals,

we study the problem of conflict-free coloring collinear points with respect

to a given set of intervals. The problem was studied by Katz et al. [2007]

who claim a polynomial time 4-approximation algorithm. We propose a

polynomial time 2-approximation algorithm. We also prove that the analysis

of our 2-approximation algorithm is tight, by showing a family of instances

which our algorithm colors with twice as many colors as the optimal solution.

We initiate the study of conflict-free coloring vertices of graphs with
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respect to paths of graphs. The minimum number of colors necessary to

conflict-free color a graph G as above is the conflict-free chromatic number

of G (with respect to paths), denoted by χcf(G). We relate this new no-

tion to the already studied notion of ordered colorings, which are essentially

unique maximum conflict-free colorings. Conflict-free colorings of graphs are

a weakening of ordered colorings. Moreover, a conflict-free coloring is always

a square-free coloring, because a path whose color string is a square implies

that all colors repeat in the path, i.e., the conflict-free property is not true.

Therefore we have the updated inclusion hierarchy of colorings, shown in

figure 1.4 (compare with figure 1.3).

traditional colorings

↑
square-free colorings

↑
conflict-free colorings

↑
ordered colorings

Figure 1.4: An updated inclusion hierarchy of graph colorings

As a result, in terms of chromatic numbers, we have the following.

Proposition 1.18. χ(G) ≤ χsf(G) ≤ χcf(G) ≤ χo(G).

It seems the conflict-free chromatic number behaves more like the ordered

chromatic number. For many graphs, the two numbers are the same. How-
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ever, we provide a family of graphs where the two chromatic numbers are dif-

ferent. It is interesting that in all graphs we have found with χcf(G) < χo(G),

the two chromatic numbers differ just by one (χcf(G) = χo(G)− 1).

We also initiate the study of conflict-free coloring vertices of graphs with

respect to neighborhoods of graphs. The open neighborhood of a vertex v

contains all the other vertices that share an edge with v. The closed neigh-

borhood of v also contains the vertex v. We define appropriate chromatic

numbers and provide upper bounds based on the dominating set number

of the graph and the maximum degree of the graph. By combining these

bounds, we prove that every graph with n vertices can be conflict-free col-

ored with respect to neighborhoods with 2
√
n colors, and this is order tight

in some cases (namely there are graphs that need Ω(
√
n) colors).

Finally, we initiate the study of Ramsey-type problems for conflict-free

coloring. Ramsey theory is a rich subject in combinatorics and was essentially

initiated by Ramsey [1930], Erdős and Szekeres [1935], although Ramsey-type

results predate the aforementioned papers [Hilbert, 1892, Schur, 1916, van der

Waerden, 1927]. See the book by Graham et al. [1990] for more details. One

could describe Ramsey-type results as follows. For some family of hyper-

graphs, given a finite number of colors, there is a large enough hypergraph,

such that no matter how one colors its vertices, some monochromatic edge

emerges (i.e., with all vertices with the same color). Since the emergence

of a monochromatic edge implies already the emergence of a non-conflict-

free edge (or more simply, a conflict edge), all monochromatic Ramsey-type
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results imply conflict Ramsey-type results. A question that is also impor-

tant is how big the hypergraph has to become before the emergence of a

monochromatic or conflict edge. There is a monochromatic Ramsey-type

theorem when the hyperedge set consists of all arithmetic progressions of

length k over {1, . . . , n} by van der Waerden [1927]. We immediately have

a conflict-free Ramsey-type theorem and we compute exactly how big the

hypergraph has to be in order to have a conflict edge, in the case of two

colors, for arbitrary k. In other words, we compute exactly conflict-free van

der Waerden numbers for two colors. This exactness is in sharp contrast

with the monochromatic van der Waerden numbers, of which very few are

known exactly, even for two colors. The six non-trivial monochromatic van

der Waerden numbers known exactly are shown in table 4.1 on page 129.

As expected, conflict-free van der Waerden numbers are significantly smaller

than monochromatic van der Waerden numbers.



Chapter 2

Deterministic conflict-free

coloring for intervals

We investigate deterministic algorithms for a frequency assignment problem

in cellular networks. The problem can be modeled as a special vertex coloring

problem for hypergraphs: In every hyperedge there must exist a vertex with

a color that occurs exactly once in the hyperedge (the conflict-free property).

We concentrate on a special case of the problem, called conflict-free coloring

for intervals. We introduce a hierarchy of four models for the above problem:

(i) static, (ii) dynamic offline, (iii) dynamic online with absolute positions,

(iv) dynamic online with relative positions. We show that the hierarchy is

strict. In the dynamic offline model, we give a deterministic algorithm that

uses at most log3/2 n + 1 ≈ 1.71 log2 n colors and exhibit inputs that force

any algorithm to use at least 3 log5 n+ 1 ≈ 1.29 log2 n colors. For the online

23
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absolute positions model, we give a deterministic algorithm that uses at most

3dlog3 ne ≈ 1.89 log2 n colors. To the best of our knowledge, this is the first

deterministic online algorithm using O(log n) colors, in a non-trivial online

model. We also consider conflict-free coloring only with respect to intervals

that contain at least one of the two extreme points.

2.1 Introduction

Fiat et al. [2005] considered the special case of conflict-free coloring where

the hypergraph is defined as follows: Vertices are identified with points on

a line and E consists of all subsets of V defined by intervals intersecting at

least one vertex. A line with n points has n(n+ 1)/2 such subsets (for every

i ∈ {1, . . . , n}, there are n− i+ 1 different subsets containing i points). For

n = 5, these subsets are shown in figure 2.1. We call these subsets intervals

since for our purpose, two intervals are equivalent if they contain the same

vertices. We represent colorings by listing the colors of points from left to

right in a string. For example, for the points in figure 2.1 (n = 5), 12312 is a

conflict-free coloring, whereas 12123 is not (because the interval containing

the four leftmost points does not contain a point of unique color).

Conflict-free coloring for intervals is important because it can model as-

signment of frequencies in networks where the agents’ movement is approx-

imately unidimensional, e.g., the cellular network that covers a single long

road and has to serve agents that move along this road. In some kinds of
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Figure 2.1: Points on a line and intervals

networks, like wireless sensor networks, the density of base stations can be

very high and non-uniform. Moreover, the ranges of the agents can also be

non-uniform. To ensure the absence of conflicts we require the conflict-free

property for all possible intervals. Also, conflict-free coloring for intervals

plays a role in the study of conflict-free coloring for more complicated range

spaces and it is a special case of conflict free coloring points on the plane

with respect to disks, when all points to be colored are collinear (see Even

et al. [2003]).

The static version of the problem, where the n points are to be colored

simultaneously, is solved in Even et al. [2003]. For n = 2k−1, the coloring Ck

is defined recursively as follows: C1 = 1 and Ck+1 = Ck ◦ (k+ 1) ◦Ck (where

◦ is the concatenation operator for strings). The coloring Ck is conflict-free

and uses k colors for 2k − 1 points. For n with n < 2k − 1, the prefix (in

fact, any substring) of length n of Ck is conflict-free. Even et al. [2003] also

show that this coloring with 1 + blog2 nc colors is the best possible. Observe

that Ck has the property that the maximum color in each interval is always

unique. Coloring intervals with a unique maximum is called vertex ranking
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of paths, or ordered coloring of paths, and in that context similar results

were obtained in Iyer et al. [1988], Katchalski et al. [1995]. Since colorings

with asymptotically log2 n colors are important, from now on, we sometimes

abbreviate the binary logarithm of n by lg n.

The problem becomes more interesting when the vertices are given online

by an adversary. Namely, at every given time step t ∈ {1, . . . , n}, a new

vertex vt ∈ V is given and the algorithm must assign vt a color such that

the coloring is a conflict-free coloring of the hypergraph that is induced by

the vertices Vt = {v1, . . . , vt}. Once vt is assigned a color, that color cannot

be changed in the future. It is desirable to avoid recoloring for the following

technical reason: If a base station changes color, there might be disruption

of service for all agents connected to it (a model in which a small number of

recolorings is allowed is presented in section 3.5 and also in Bar-Noy et al.

[2007c]). We are interested in an online setting, in which the algorithm

has no knowledge of how vertices will be requested in the future. For this

version of the problem, in the case of intervals, Fiat et al. [2005] provide

several algorithms. Their deterministic algorithm uses Θ(log2 n) colors in

the worst case. Their randomized algorithm uses O(log n log log n) colors

with high probability. Randomized algorithms that use O(log n) colors with

high probability have been obtained and are presented in chapter 3 (see also

[Chen, 2006, Chen et al., 2007, Bar-Noy et al., 2007c]). All of the randomized

algorithms assume the slightly weaker oblivious adversary model, in which

the adversary has to commit to a specific input sequence before revealing the
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conflict-free coloring

static dynamic

offline online

absolute positions relative positions

Figure 2.2: Models for conflict-free coloring for intervals

first vertex to the algorithm (see Borodin and El-Yaniv [1998]).

Our contribution

We introduce a hierarchy of four models for the above conflict-free coloring

problem for hypergraphs: (i) static, (ii) dynamic offline, (iii) dynamic on-

line with absolute positions, and (iv) dynamic online with relative positions.

Before defining the models, the following definition is necessary.

Definition 2.1. A hypergraph H ′ = (V ′, E ′) is an induced subhypergraph of

H = (V,E) if V ′ ⊆ V and E ′ = {e ∩ V ′ | e ∈ E} We say that H ′ is induced

by V ′.

Below we define the four models. The relationship among them is shown

in figure 2.2.

• In the static model, the complete hypergraph H is given, and a conflict-

free coloring for H must be found by the algorithm.
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In dynamic models, a sequence {Ht}nt=1 of hypergraphs (with H = Hn)

is given where Ht has t vertices and, for t > 1, Ht−1 is an induced subhyper-

graph of Ht; for every t a conflict-free coloring for Ht must be found that, for

t > 1, extends the coloring of Ht−1 (i.e., the algorithm can not change colors

of vertices). Alternatively, the input is a permutation of the vertices of the

final hypergraph, and Ht, the hypergraph to be colored at every time step,

is the subhypergraph of H induced by the first t vertices in the permutation.

• In the dynamic offline model, the complete sequence {Ht}nt=1 is given.

In dynamic online models, the sequence {Ht}nt=1 is revealed incrementally,

at discrete time steps t = 1, . . . , n, i.e., at time t, Ht is given, and a color

for the new vertex vt must be found without knowledge of future Ht′ , where

t′ > t.

• In the dynamic online with absolute positions model, in addition to

{Ht}nt=1 being revealed incrementally, the final Hn = H is given from

the start as a vertex-labeled hypergraph and for each time t, Ht is also

given as a vertex-labeled hypergraph, with the induced subhypergraph

isomorphism between Ht and Hn preserving the labels. This means

that the algorithm knows for every new vertex vt where it is going to

lie (i.e., its ‘absolute’ position) in the final hypergraph H.

• In the dynamic online with relative positions model, no information

about the final hypergraph H is given (not even its size n). The only
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information might be the structure of the final hypergraph (for exam-

ple, when we color points on a line with respect to intervals). Thus, for

every new vertex vt, we only know its ‘relative’ position with respect

to already inserted points, by means of the information in Ht.

From the application point of view, all models are interesting.

• In the static model, all base stations are activated at the same time.

• The dynamic offline model captures a scenario where the order of acti-

vation of base stations is known from the start. Additionally, compar-

ison of dynamic online algorithms against algorithms in the dynamic

offline model is more fair than against algorithms in the static model.

Chan et al. [2008] studied the problem of coloring points on the plane

with respect to unit disks in the dynamic offline model we introduced.

• The dynamic online with absolute positions model is also motivated,

because revealing absolute positions is not unnatural in many scenarios:

One can think of all base stations being at fixed positions, which are

known to the algorithm in advance. This means that the algorithm

is aware of the final hypergraph that models the situation where all

base stations are activated. At the start, no base station is activated.

Base stations are constructed or activated one by one, in some order, in

response to increasing network traffic, and thus the order of activation

is not known from the start. Every new station has to be given a color

by the algorithm, such that the conflict-free property is maintained.



panagiotis cheilaris conflict-free coloring 30

model lower bound upper bound

dynamic online, relative positions 1 + 3 log5 n O(log2 n)
dynamic online, absolute positions 1 + 3 log5 n 3dlog3 ne

dynamic offline 1 + 3 log5 n 1 + log3/2 n
static 1 + blog2 nc 1 + blog2 nc

Table 2.1: Number of colors used in deterministic algorithms for intervals

model lower bound upper bound

dynamic online, relative positions 1.29 log2 n O(log2 n)
dynamic online, absolute positions 1.29 log2 n 1.89 log2 n

dynamic offline 1.29 log2 n 1.71 log2 n
static 1.00 log2 n 1.00 log2 n

Table 2.2: Asymptotic number of colors used in deterministic algorithms for
intervals scaled to logarithm with base 2

• Finally, the dynamic online with relative positions model is the one with

the fewest restrictions on the adversary and can capture a situation

where the exact positions of new base stations can not be planned in

advance.

The four models produce a hierarchy of models, in the sense that an

adversary in a higher model has more power and an algorithm for a higher

model works also for a lower model. A summary of results for determin-

istic algorithms for conflict-free coloring with respect to intervals is given

in tables 2.1 and 2.2. All the online algorithms considered so far in the

literature work in the relative positions model. Our main technical result

concerns a deterministic algorithm that uses 3dlog3 ne ≈ 1.89 lg n colors, in

the slightly changed online model of absolute positions. Our deterministic
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algorithms work against an unrestricted adversary, i.e., they do not assume

the (weaker) oblivious adversary. We also exhibit sequences of length n = 3k

that need at least 1 + 2 log3 n ≈ 1.26 lg n colors in any dynamic model, and

sequences of length n = 5k that need at least 1 + 3 log5 n ≈ 1.29 lg n colors

in any dynamic model. The above lower bound instances are constructed

with the dynamic offline model in mind, but because of the hierarchy, they

apply also to the two dynamic online models, as shown in table 2.1. It is not

difficult to also prove gaps for the lower bounds between the dynamic offline

and the absolute positions models and between the absolute positions and

the relative positions models, but they are constant additive, not constant

multiplicative (like the gap in the lower bound between the static and the

dynamic offline models). We defer the aforementioned discussion until we in-

troduce ways to describe the two different types of dynamic inputs (absolute

and relative) in section 2.2. For the offline model, we describe an algorithm

that uses at most 1 + log3/2 n ≈ 1.71 lg n colors in the dynamic offline model.

Finally, we discuss coloring with respect to a specific subset of intervals.

One interesting case is coloring with respect to rays (or halflines), namely

the subset of intervals that contain at least one of the two extreme points.

For this case, we show a strong separation between static and dynamic offline

models, in the sense that in the static model three colors suffice for any n,

whereas in the dynamic offline model blg nc + 1 colors might be necessary.

On the other hand, blg (n− 2)c+3 colors suffice even in the relative positions

model.
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In section 2.2, we introduce two ways to describe input to dynamic al-

gorithms in the case of intervals. In section 2.3, we consider the dynamic

offline model. In section 2.4, we discuss the O(log n) colors algorithm in the

absolute positions model. In section 2.5, we study conflict-free coloring with

respect to rays. In section 2.6, we discuss some of the results and mention

open problems.

2.2 Describing dynamic model inputs

We show two ways to represent inputs for dynamic models, in the intervals

case. We will be using them in subsequent sections.

In the relative positions model, the sequence of points inserted can be

described by the position in which each new point is inserted, relative to

previously inserted points. If i − 1 points have already been inserted, the

i-th point can be inserted in any of i positions described by an integer in the

range [0, i − 1]: 0 is for the new point at the start of the sequence (before

any other point), and k > 0 is for the new point immediately after the k-th

already inserted point.

An insertion sequence of length n is represented by a string of n integers,

σ, where 0 ≤ σ(i) ≤ i − 1. If we consider insertion sequences of the same

length n ordered lexicographically, then the first and last elements in that

order are: sfirst
n = [0, 0, 0, . . . , 0], slast

n = [0, 1, 2, . . . , n − 1]. In the relative

positions online model, an insertion sequence is revealed from left to right,
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one by one, to the online algorithm. There are n! possible insertion sequences

of length n.

In the absolute positions model, initially the algorithm knows the total

number of points to be inserted. Then, for each new point the absolute

position of that point in the final sequence is revealed to the algorithm. The

absolute position can be any number in {1, . . . , n} which has not appeared

before. Thus, the input to the algorithm is a permutation π ∈ Sn that is

revealed one by one, from left to right. Therefore, there are again n! possible

insertion sequences of length n.

In the dynamic offline setting, the input can be given in either absolute

or relative positions, because the two representations are easily convertible

to each other if the whole sequence is known. For example, the insertion

sequence σ = 00121 (relative positions) corresponds to the permutation π =

51342 (absolute positions), which means the first point inserted is at the 5th

absolute position (rightmost), the second point inserted is at the 1st absolute

position (leftmost), and so on.

Strict hierarchy of models. In the following, we show that the hierarchy

of models shown in figure 2.2 is strict, in the sense that deterministic algo-

rithms in less constrained models have strictly more power and can be made

to use less colors, and therefore we prove a separation result for the models.

The dynamic version of the problem is more difficult than the static ver-

sion of the problem, because there might be more constraints to be satisfied.
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Even for n = 3, we have the static coloring 121, but the insertion sequence

σ = 011 (π = 132 in absolute positions) needs three different colors to be

colored dynamically. In section 2.3, we exhibit sequences that separate the

two models by more than one color.

In order to separate the offline dynamic model from the online models,

we need to exhibit two insertion sequences of absolute positions that have a

common prefix, but the optimal offline algorithm colors essentially differently

the sequences, up to that prefix. Two such sequences of absolute positions

are: π = 123654 and π′ = 123465, which share the common prefix 123. Two

optimal colorings for the above sequences are: C = 123121 and C ′ = 121312,

respectively, and it is not difficult to see (after some case analysis) that

in an optimal coloring, for π the algorithm has to use a new color for the

point appearing at time t = 3, whereas for π′ the algorithm has to reuse a

previously used color for the aforementioned point. Therefore, there is no

deterministic online algorithm which computes the optimal coloring for both

π and π′, whereas some offline algorithm can compute the optimal coloring

for both.

Similarly, in order to separate the absolute position from the relative po-

sition online model, we need to exhibit two insertion sequences of relative

positions that have a common prefix, but for which the respective absolute

positions inputs have different prefixes, so knowledge of absolute positions

might allow us to color the sequences better. Two possible sequences of

relative positions are: σ = 0122456 and σ′ = 0123456 with common prefix
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012. The corresponding absolute positions sequences are: π = 1243567 and

π′ = 1234567, i.e., they differ in the third position (or, alternatively, the

point appearing at time t = 3). In both cases the optimal coloring is of the

form 1213121 and it is computed by an algorithm only if for σ the algorithm

uses a new color for the point appearing at time t = 3, whereas for σ′ the

algorithm reuses a previously used color for the aforementioned point. There-

fore, there is no deterministic online algorithm on relative positions that can

color both input sequences optimally, because no relative positions algorithm

can differentiate between the two sequences early enough, in contrast with a

deterministic online algorithm on absolute positions, which can compute the

optimal coloring for both inputs.

2.3 Dynamic offline model

Lower bound We exhibit insertion sequences that need asymptotically

c lg n colors, where c > 1. This is in contrast with the static model in which

asymptotically lg n colors are enough in all cases. First, some definitions are

needed.

Definition 2.2. Given a string π of numbers and x ∈ N, the string (π + x)

is defined by adding x to each element of π, i.e., (π + x)(i) = π(i) + x, for

i ∈ {1, . . . , |π|}, where |π| is the length of π.
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We also define a sum-like operator for concatenation of strings:

p

©
i=1

si := s1 ◦ · · · ◦ sp .

Permutations can be viewed as strings of numbers. Here we first explain

and then formally define a sequence of larger and larger permutations: π,

π2, π3, . . . . In general, for k > 1, πk consists of n πk−1-like components

that are inserted in the π order. We alert the reader that πk should not be

confused with concatenation of k copies of the string π: ©k
i=1 π. For example,

if π = 132, then n = |π| = 3 and π2 = 132798465, i.e., |π2| = 32 = 9. Notice

that π2 consists of three π-like components (132, 798, 465), that are inserted

in the π order.

Definition 2.3. Given a permutation π, with |π| = n, and k ∈ N, the

permutation πk is defined recursively:

π0 = 1 ,

πk+1 =
n

©
i=1

(πk + (π(i) − 1) · nk) .

It is not difficult to prove that if π is a permutation, then indeed πk is

also a permutation. The proof is by induction on k. We have that π0 =

1 is trivially a permutation. For the inductive step, assuming that πk is

a permutation, in πk+1 the n different concatenation components range in

{1, . . . , nk}, {nk+1, . . . , 2nk}, . . . , {(n−1)nk+1, . . . , nk}, and therefore πk+1
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is also a permutation.

The idea behind our lower bound proofs is to find a permutation π such

that for every k > 0, πk needs y more colors than πk−1, where y is fixed. In

the following, we prove two lower bounds. The first is simpler, it is based on

π = 132 (with y = 2), and gives a 2 log3 n + 1 ≈ 1.26 lg n lower bound. The

second is more elaborate, it is based on π = 15432 (with y = 3), its proof

relies on the previous lower bound, and it gives a lower bound of 3 log5 n+1 ≈

1.29 lg n.

For every k, we exhibit an insertion sequence πk of absolute positions that

has length n = 3k and needs 2k + 1 = 2 log3 n + 1 colors to be conflict-free

colored.

Proposition 2.4. For π = 132, input πk needs at least 2k + 1 colors in the

dynamic model.

Proof. The proof is by induction. For the base case, k = 0, input π0 = 1

needs one color.

For the inductive step, assume input πk−1 needs at least 2k − 1 colors.

Consider the colorings of the three πk−1 components of πk: A, B, C, in

increasing time order of appearance. Since they are inserted in the 132 order,

the πk coloring incrementally looks like: A, then AB, and finally ACB. By

the inductive hypothesis each of A, B, C uses at least 2k − 1 colors.

Assume, for the sake of contradiction, that ACB uses at most 2k colors.

At least one color that appears in ACB must be unique. If the unique color
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is in A, then CB uses at most 2k − 1 colors; if in B, then AC uses at most

2k − 1 colors; if in C, then AB uses at most 2k − 1 colors. However, all of

CB, AC, AB appear at some point in the coloring of πk: CB and AC appear

in ACB, and AB appears just before the insertion of C. Thus, in each of CB,

AC, AB, there must be a unique color. Now, take J ∈ {CB,AC,AB} that

is using at most 2k − 1 colors: This J has a unique color among the colors

used in J , that can only appear in one of the two πk−1 components of J ,

therefore, the other πk−1 component of J is using at most 2k − 2 colors; a

contradiction to the inductive hypothesis.

For every k, we exhibit an insertion sequence πk of absolute positions that

has length n = 5k and needs 3k + 1 = 3 log5 n + 1 colors to be conflict-free

colored.

Proposition 2.5. For π = 15432, input πk needs at least 3k + 1 colors in

the dynamic model.

Proof. The proof is by induction. For the base case, k = 0, input π0 = 1

needs one color.

For the inductive step, assume input πk−1 needs at least 3k − 2 colors.

Consider the colorings of the five πk−1 components of πk: A, B, C, D, E, in

increasing time order of appearance. Since they are inserted in the 15432

order, the πk coloring incrementally looks like: A, AB, ACB, ADCB, and

finally AEDCB. By the inductive hypothesis each of A, B, C, D, E uses at

least 3k − 2 colors.
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Assume, for the sake of contradiction, that AEDCB uses at most 3k

colors. At least one color that appears in AEDCB must be unique. If the

unique color is in A, then EDCB uses at most 3k − 1 colors; if in B, then

AED uses at most 3k−1 colors; if in C, then AED uses at most 3k−1 colors;

if in D, then ACB uses at most 3k− 1 colors; if in E, then ACB uses at most

3k − 1 colors. However, all of EDCB, AED, ACB appear at some point in

the coloring of πk. For AED, ACB, since the πk−1 components are inserted

in the 132 order, an argument along the lines of the proof of proposition 2.4

gives a πk−1 component using at most 3k − 3 colors; a contradiction. For

EDCB, the πk−1 components are inserted in the 4321 order: One of them

has a unique color, which leaves at least two consecutive πk−1 components

using at most 3k − 2 colors. One of these two consecutive components has

a unique color, and thus the other component uses at most 3k − 3 colors; a

contradiction to the inductive hypothesis.

It is an open problem whether other permutations can improve on the

3 log5 n + 1 lower bound. We remark that the above lower bound applies to

all three dynamic models.

Upper bound The dynamic offline case can be viewed as a static problem,

because dynamically coloring the sequence {Ht}nt=1 is equivalent to statically

coloring the hypergraph H = (V,
⋃n
t=1Et), where Et is the hyperedge set

of Ht. In Even et al. [2003], a general framework for conflict-free coloring is

presented: The authors provide an algorithm (Algorithm 1 in the paper) that



panagiotis cheilaris conflict-free coloring 40

colors the points in iterations. At the `-th iteration, some points are colored

with color ` and these colored points are not considered in the subsequent

iterations. To simplify the presentation, we do not consider singleton hyper-

edges, since they are conflict-free colored for free. The notion of a Delaunay

graph is useful.

Definition 2.6. The Delaunay graph G(H) of the hypergraph H = (V,E)

is the graph (V,D), where the edge set D ⊆ E is the subset of all hyperedges

in E of cardinality two.

For example, the hypergraph

H = ({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {1, 2, 3}, {4, 5}})

has the Delaunay graph

G(H) = ({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {4, 5}}).

We set E =
⋃n
t=1Et, and adapt the framework of Even et al. [2003] to

get the algorithm in figure 2.3.

Our algorithm in figure 2.3 is slightly different from the one in Even et al.

[2003]. When the algorithm in Even et al. [2003] computes E`+1 from E`,

it does not consider hyperedges for which |e ∩ V `| = 1, since they are for

sure conflict-free colored. On the other hand, our algorithm includes those

hyperedges in the subsequent iteration. We made the above modification
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`← 1; V 1 ← V ; E1 ← E
while V ` 6= ∅ do:

I` ← an independent set of the Delaunay graph of (V `, E`)
color every v in I` with color `
V `+1 ← V ` \ I`
E`+1 ← {e ∩ V `+1 | e ∈ E`}
`← `+ 1

Figure 2.3: Algorithm for the dynamic offline model

because the hypergraph (V `, E`) arises by inserting the points in V ` in their

time order and considering all possible intervals at each time. With this ob-

servation, it is easier to argue about the Delaunay graph of (V `, E`), and the

key to get an efficient conflict-free coloring is to find a big independent set

in the Delaunay hypergraph. Also, it is easier to implement our algorithm.

The correctness of our algorithm is an immediate consequence of the correct-

ness of the algorithm in Even et al. [2003], since ours just conflict-free colors

more hyperedges. In order to bound the number of colors used, the following

lemma is needed.

Lemma 2.7. In the case of intervals, the Delaunay graph of (V `, E`) is

3-colorable.

Proof. Consider the vertices in V ` ordered according to the time of insertion.

Each appearing vertex is immediately adjacent to at most two other vertices,

and thus it can be colored greedily by one of three given colors.

Corollary 2.8. In a 3-coloring of the Delaunay graph of (V `, E`), the largest

color class is an independent set of size at least d|V `|/3e.
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Theorem 2.9. There is an algorithm that uses at most log3/2 n+ 1 colors in

the dynamic offline model.

Proof. Apply the algorithm in figure 2.3, where the independent set chosen at

each iteration ` is the largest size color class of any 3-coloring of the Delaunay

graph of (V `, E`). By corollary 2.8, at each iteration at least d|V `|/3e are

colored. Therefore, the number of iterations (and thus the number of colors)

is bounded by log3/2 n+ 1.

Remark 2.10. Recently, Chan et al. [2008] gave an algorithm that colors

points on the plane with respect to unit disks in the dynamic offline model

we introduced.

2.4 Absolute positions model

In this section we present an algorithm that uses O(log n) colors in the abso-

lute positions model. Roughly speaking, a point p with a unique color in an

interval acts as a separator : Points to the left of p and points to the right of p

can be colored independently, and colors can be freely reused. Our algorithm

uses only a logarithmic number of colors by choosing the correct points as

separators.

In a preliminary version of this work (see Bar-Noy et al. [2006]), we pre-

sented an algorithm that chooses the separators in each level and uses recur-

sion to independently color the left and the right side of the separators. Here,

we present an algorithm that adopts the opposite approach of coloring two
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thirds of the points with a greedy non-recursive scheme in each level and of

coloring the separators by using the recursion. The algorithm we present here

is better in terms of the number of colors it uses (asymptotically 1.89 lg n)

in the worst case, compared to the algorithm of Bar-Noy et al. [2006] (2 lg n

colors).

2.4.1 An algorithm that uses 3dlog3 ne colors

We provide a recursive algorithm in the absolute positions model that uses

3dlog3 ne ≈ 1.89 lg n colors to color any input of size n. Triples of points

with consecutive positions play a major role in the algorithm and therefore

we call it the triples algorithm.

To prove the above bound, it suffices to show a method of conflict-free

coloring any input of size 3k with 3k colors, because, in that case, if 3k−1 <

n ≤ 3k then the algorithm takes the n-sized input, attaches (in any insertion

order) 3k − n dummy points to the right of the n points, solves the 3k-sized

instance with the method to get a conflict-free coloring with 3k colors, and

then discards the colors of the dummy points to get a conflict-free coloring

of the original n points.

If n = 3k, points are colored in k levels that correspond to recursion

call levels of the algorithm and each level uses three colors. At each level

` ∈ {1, . . . , k}, some of the points are colored and the rest are deferred for

coloring at a higher level. More precisely at each level `, with ` < k, two

thirds of the points are colored in that level and the rest (one third) are
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points

level input size colored deferred colors used

1 3k 2 · 3k−1 3k−1 1, 2, 3
. . . . . . . . . . . . . . .
` 3k+1−` 2 · 3k−` 3k−` 3`− 2, 3`− 1, 3`

. . . . . . . . . . . . . . .
k − 1 9 6 3 3k − 5, 3k − 4, 3k − 3
k 3 3 0 3k − 2, 3k − 1, 3k

Table 2.3: Recursion levels of the triples algorithm

deferred. Thus, for each level ` < k of the recursion, out of the 3k+1−` points

that reach the level, 2 ·3k−` are colored in that level and 3k−` are deferred for

coloring in a higher level. The final level k is special because all three points

that reach it are colored in that level. This situation is shown in table 2.3,

where, by convention, level ` uses colors 3`− 2, 3`− 1, and 3`.

Now, we describe how the algorithm decides at each level which points

to color and which to defer. At each level `, with ` < k, the algorithm

partitions the points in triples, according to their absolute positions: The

three leftmost points are in the first triple, the second three leftmost points

are in the second triple, and so on, until the final triple which contains the

three rightmost points. The decision at each level ` is made as follows.

For every triple, the first point that is requested to be colored in

the triple is deferred for coloring in a higher level, whereas the

other two points are colored at level `.

Also, for ` < k, the input at level `, which we denote by π〈`〉, induces an input
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π〈`+1〉 at level `+1 as follows: The absolute positions of triples at level ` give

the absolute positions of points and points at level `+ 1 are requested in the

same order as the first points of triples at level `. Initially, the input at level

1, i.e., π〈1〉, is set equal to the original input π. For example, consider the

input π = 923745618, revealed to the online algorithm, one by one element,

from left to right. In order to better illustrate how the algorithm runs, we

take the inverse permutation of π, which maps absolute positions of points

to the time they are requested:

π−1 = π−1
〈1〉 = 823 567 491 .

This is the input for level 1 (as denoted by the subscript) and we have also

highlighted the first (i.e., earliest) point requested in every triple. Input π

induces the following input for level 2: π−1
〈2〉 = 231, or π〈2〉 = 312.

The triples algorithm relies on a dynamic first-fit greedy coloring scheme,

which colors every new point that appears with the smallest color such that

the conflict-free property is maintained in all intervals. The following lemma

proves useful.

Lemma 2.11. Any conflict-free coloring of x < 4 points, can be extended

to a conflict-free coloring of x + 1 points, with at most three colors, for any

position of the x + 1-th point, by using the dynamic first-fit greedy coloring

scheme.

Proof. If the coloring of x points is using fewer than three colors, then the
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greedy scheme introduces at most one new color. If the coloring of x points

is using three colors, then it must be the case that x = 3 and the coloring

looks like abc. In that case, the first-fit greedy scheme can color any new

point by reusing the minimum color among the colors of non-adjacent points

to the new point.

Now, we explain how the algorithm colors points at a specific level. If

a new point p is requested that is decided to be colored at level ` (i.e., not

deferred for coloring at a higher level), the algorithm finds the set of all points

P already colored at level ` with the following property: p′ is in P , if there

is no point deferred for coloring at a higher level between p and p′. It can be

proven that P contains at most three points. We postpone the proof of the

above statement, and include it later in the proof of the correctness of the

algorithm, in proposition 2.12. The algorithm chooses the color of p using a

greedy coloring scheme, i.e., by choosing the minimum color possible among

3`−2, 3`−1, and 3`, so that the interval containing P ∪{p} remains conflict-

free (we proved in lemma 2.11 that this is always possible). The coloring at

each level `, corresponding to input π〈`〉, is denoted by C〈`〉; it is a partial

coloring for ` < k, because only two thirds of the points are colored.

The run of the algorithm on the input example mentioned above is shown

in figure 2.4. Each ‘∗’ denotes a point that is to be colored at a higher level

and C denotes the final coloring.

For example, the point colored at t = 4 gets color 2 (at level 1), because

it is not the first point that appeared in its triple, and because there is a
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π−1
〈1〉 = 8 2 3 5 6 7 4 9 1

C〈1〉 = 1 ∗ 1 ∗ 1 3 2 1 ∗

π−1
〈2〉 = 2 3 1

C〈2〉 = 5 6 4

C = 1 5 1 6 1 3 2 1 4

Figure 2.4: A run of the triples algorithm

point requested at t = 3 which is colored with color 1.

The correctness of the algorithm is immediate from the following propo-

sition.

Proposition 2.12. At any time t ∈ {1, . . . , n}, in any interval I of points,

there is a point in I colored with a unique color in I. Moreover, a uniquely

colored point can always be found among the points that were colored in the

deepest recursive level of points in I.

Proof. Recall that the three leftmost points are in the first triple, the second

three leftmost points are in the second triple, and so on, until the final triple

which contains the three rightmost points. At some time t, we say that a

triple is empty if no point of it has yet been requested to be colored. At any

time t, take any interval I and consider the points in I that were colored at

the highest level `. If ` = k, then these are at most three points in I and

by lemma 2.11 there is a unique color in I. If ` < k, then I can not span a

whole non-empty triple in level `, because it will include a point colored at a

level higher than `. Also, I can not span parts of more than two non-empty
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[ ∗ · · ]

possible empty triples︷ ︸︸ ︷
[ · ·︸ ︷︷ ︸

interval I

∗ ]

Figure 2.5: At most four points spanned at level ` < k by I

triples, because then it would span a whole triple between the two extreme

triples. Thus, I spans at most two triples and at most two points in each of

them (see figure 2.5). By the description of the algorithm these points are

colored by a greedy scheme with colors from 3`− 2, 3`− 1, and 3`, and thus

by lemma 2.11 there is a unique color in I.

Thus, we have established the following theorem.

Theorem 2.13. In the dynamic online absolute positions model, there is a

deterministic algorithm that uses at most 3dlog3 ne colors.

2.5 Coloring with respect to rays

We relax the conflict-free coloring problem of intervals as follows. Instead of

the requirement that all intervals need to have a uniquely colored point, it is

required that the conflict-free condition holds only for intervals in a specific

subset of the set of all intervals. Examples are coloring with respect to all

intervals of a specific length, say k, or all intervals of length up to k. Recently,

the problem has been also studied by Katz et al. [2007], where approximation

algorithms have been obtained; see section 4.1 for an algorithm with improved

approximation ratio over the ones by Katz et al. [2007].
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Another interesting case arises from the intervals that contain either of

the two extreme points. Equivalently, these are intervals that are defined

by halflines (infinite intervals), or rays. We therefore refer to the problem

as conflict-free coloring with respect to rays. The motivation for consider-

ing this restricted subset comes from agents whose movement range is not

strictly inside the line segment between the two extreme points. We also

want to point out how different are the results and the gaps between models,

compared to the all intervals case.

For n points there are 2n − 1 ray defined intervals, of which n contain

the leftmost point and are called prefix intervals and n contain the rightmost

point and are called suffix intervals (the interval containing all points is both

a prefix and a suffix interval).

In the static model, the coloring 133 . . . 332 (i.e., color the extreme points

with unique colors and use the same color for all non-extreme points) suffices

for all n and uses three colors. It is not hard to see that three colors are

required for n ≥ 4 (for n = 3 the coloring 121 with two colors is a conflict-

free coloring).

To analyze the problem in the dynamic models, we consider first coloring

with respect to prefix intervals only (the suffix case has the same bounds, be-

cause it is symmetric). In the static model for prefixes, the coloring 122 . . . 22

is a conflict-free coloring with 2 colors. Obviously, this coloring is optimal.

In the dynamic models for prefixes, we will first prove a lower bound of

1 + blg nc even for the dynamic offline model and then provide an algorithm
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using 2 + blg(n− 1)c colors already in the relative position model.

Proposition 2.14. In the dynamic (offline) model, input σ = 0n needs

1 + blg nc colors to be conflict-free colored with respect to prefixes.

Proof. By viewing the dynamic problem as a static problem (as we did in

the upper bound discussion of section 2.3), it can be proven that coloring

0n with respect to prefixes is equivalent to coloring n points statically with

respect to (all) intervals. This is because the point inserted at t = i is always

at the left of all previously inserted points, contributing i new intervals, and

therefore, after all n points have been inserted, all n(n + 1)/2 intervals are

defined. Thus, at least 1 + blg nc colors are needed.

We propose the following algorithm for coloring prefixes: The algorithm

colors differently

(a) points that appear to the left of all previously inserted points,

(b) points that appear to the right of at least one previously inserted point.

The first group of points contains points for which σ(i) = 0, and the sec-

ond group points for which σ(i) > 0. Therefore, it is possible to distinguish

between the two groups even in the relative positions model. Points in the

first group are colored according to static coloring for intervals: . . . 41213121.

Points in the second group are all colored with the same color, which is dif-

ferent from colors used in the first group. For example, input σ = 010120020
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is colored as 131?2??1?, where ‘?’ is the color used for points in the sec-

ond group. It is not difficult to see that subsets of points which must have

the conflict-free property never contain a ‘?’-colored point as their leftmost

point. Thus, every subset of points that must be conflict-free colored con-

tains a point of the first group. Additionally, every such subset contains

points with consecutive positions in the first group, and is therefore already

conflict-free colored. If the input is 0n, exactly 1 + blg nc colors are used.

Otherwise, at least one point is ‘?’-colored and at most n − 1 points are in

the first group, which implies that at most 2 + blg(n− 1)c are used. We just

proved the following.

Proposition 2.15. For n ≥ 2, there is an algorithm that conflict-free colors,

with respect to prefixes, any insertion sequence σ (in the relative positions

model) with at most 2 + blg(n− 1)c colors.

Finally, we use the upper bound for prefixes (and suffixes) to prove an

upper bound for rays. We claim that for dynamically coloring with respect

to rays, one more color than the prefix (or suffix) case suffices. The idea is to

use a unique color for the first point p inserted, and then color independently

points to the left of p and points to the right of p: color whatever is inserted

to the left of p with respect to prefixes and whatever is inserted to the right

of p with respect to suffixes. From the above discussion, the following result

is immediate.

Proposition 2.16. For n ≥ 3, there is an algorithm that conflict-free colors,



panagiotis cheilaris conflict-free coloring 52

model lower bound upper bound

all dynamic 1 + blg nc 3 + blg(n− 2)c
static 3 3

Table 2.4: Number of colors used in deterministic algorithms for rays for n
at least 3

with respect to rays, any insertion sequence σ (in the relative positions model)

with at most 3 + blg(n− 2)c colors.

The above analysis gives a separation between static and dynamic models

for coloring with respect to rays: The number of colors used is a logarithmic

factor apart. All the results are shown in table 2.4. This is in contrast

with the all-intervals case in which the separation result between static and

dynamic offline model is weaker, just a constant factor apart, 1 + lg n and

1 + log3/2 n colors, respectively.

2.6 Discussion and open problems

We introduced a hierarchy of models for conflict-free coloring ranging from

a completely static model (weakest adversary model) to a fully online model

(strongest adversary model). We concentrated on deterministic conflict-free

coloring with respect to intervals. For this special case, we proposed algo-

rithms for some of the models and gave upper bounds on their worst-case

performance. We also provided lower bounds on the number of colors used

in some models.
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There are still gaps between lower and upper bounds (see table 2.1).

For example, in the dynamic offline model the lower bound is 1 + 2 log3 n ≈

1.26 lg n, whereas the upper bound is 1+log3/2 n ≈ 1.71 lg n, a constant factor

apart. The situation is similar in the absolute positions model where the

upper bound is approximately 1.89 lg n. The most important open problem

is narrowing the gap between lower and upper bound in the relative positions

model: Ω(log n), and O(log2 n), respectively, which are a logarithmic factor

apart.

So far in the literature, only the static and the fully online (relative posi-

tions) models had been considered. If there is a gap on the number of colors

used between these two extreme models, the hierarchy can help pin-point

exactly where the ‘jump’ occurs, and thus give a better understanding of

the problem. In the case of all-intervals, static uses O(log n) and the best

known online deterministic algorithm O(log2 n) colors, but this logarithmic

factor ‘jump’ is not a result of the online model, because it occurs just be-

tween the absolute positions model and the fully online (relative positions)

model. However, in the rays case, a logarithmic factor jump occurs between

the static and the dynamic offline model.

In the dynamic online absolute positions setting, the algorithm has ac-

cess to the total number n of points that will be inserted, from the start.

The triples algorithm exploits this information to achieve O(log n) colorings.

However, in the triples algorithm, for final size of input n = 3k, the adver-

sary can request the first k points in such a way such that the algorithm uses
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k different colors. An open problem in the absolute positions model is to

maintain an O(log k) coloring after the first k points have been inserted for

all k with 0 < k ≤ n.

Finally, the hierarchy of models is not limited to problems for points

on the real line. It can be used in conflict-free coloring for hypergraphs,

in general. A possible use of the hierarchy would be to better understand

conflict-free coloring problems in the plane, or even in higher dimensions.



Chapter 3

Online framework for

conflict-free coloring

hypergraphs

We provide a framework for online conflict-free coloring any hypergraph.

We use this framework to obtain an efficient randomized online algorithm

for conflict-free coloring any k-degenerate hypergraph. Our algorithm uses

O(k log n) colors with high probability and this bound is asymptotically op-

timal, because there are families of k-degenerate hypergraphs that need that

many colors. Moreover, our algorithm uses O(k log k log n) random bits with

high probability. As a corollary, we obtain asymptotically optimal random-

ized algorithms for online conflict-free coloring some hypergraphs that arise

in geometry. Our algorithm uses exponentially fewer random bits than pre-

55
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vious algorithms.

We introduce deterministic online conflict-free coloring algorithms for

points on the line with respect to intervals and for points on the plane with

respect to halfplanes (or unit disks) that use Θ(log n) colors and recolor O(n)

points in total.

3.1 Introduction

An online conflict-free coloring framework. In this section, we investi-

gate the most general form of online conflict-free coloring applied to arbitrary

hypergraphs. Suppose the vertices of an underlying hypergraph H = (V,E)

are given online by an adversary. Namely, at every given time step t, a new

vertex vt ∈ V is given and the algorithm must assign vt a color such that the

coloring is a valid conflict-free coloring of the hypergraph that is induced by

the vertices Vt = {v1, . . . , vt} (see the exact definition in section 3.2). Once

vt is assigned a color, that color cannot be changed in the future. The goal

is to find an algorithm that minimizes the maximum total number of colors

used (where the maximum is taken over all permutations of the set V ).

We present a general framework for online conflict-free coloring any hy-

pergraph. Interestingly, this framework is a generalization of some known

coloring algorithms. For example the Unique-Max Algorithm of Fiat et al.

[2005] can be described as a special case of our framework. Also, when the

underlying hypergraph is a simple graph then the first-fit greedy online al-
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gorithm is another special case of our framework. Based on this framework,

we introduce a randomized algorithm and show that the maximum number

of colors used is a function of the ‘degeneracy’ of the hypergraph. We de-

fine the notion of a k-degenerate hypergraph as a generalization of the same

notion for simple graphs. Specifically we show that if the hypergraph is k-

degenerate, then our algorithm uses O(k log n) colors with high probability.

This is asymptotically tight for any constant k.

As demonstrated in Fiat et al. [2005], the problem of online conflict-

free coloring the very special hypergraph induced by points on the real line

with respect to intervals is highly non-trivial. The best randomized online

conflict-free coloring algorithm of Fiat et al. [2005] uses O(log n log log n)

colors. Kaplan and Sharir [2004] studied the special hypergraph induced by

points in the plane with respect to halfplanes and unit disks and obtained

a randomized online conflict-free coloring with O(log3 n) colors with high

probability. Recently, the bound Θ(log n) just for these two special cases

was obtained by Chen [2006] (see also Chen et al. [2007]). We also obtained

independently an algorithm which is more general and uses only Θ(log n)

colors; an interesting evidence to our algorithm being fundamentally different

from the ones in Chen [2006], Fiat et al. [2005], Kaplan and Sharir [2004],

when used for the special case of hypergraphs that arise in geometry, is that

our algorithm uses exponentially fewer random bits. The algorithms of Chen

[2006], Kaplan and Sharir [2004] use Θ(n) random bits and our algorithm

uses O(log n) random bits.
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Another interesting corollary of our result is that we obtain a random-

ized online coloring for k-inductive graphs with O(k log n) colors with high

probability. This case was studied by Irani [1994] who showed that a greedy

first-fit algorithm achieves the same bound deterministically.

Deterministic online conflict-free coloring with recoloring. We ini-

tiate the study of online conflict-free coloring where at each step, in addition

to the assignment of a color to the newly inserted point, we allow some recol-

oring of other points. The bi-criteria goal is to minimize the total number of

recolorings done by the algorithm and the total number of colors used by the

algorithm. We introduce an online algorithm for conflict-free coloring points

on the line with respect to intervals, where we recolor at most one already

assigned point at each step. Our algorithm uses Θ(log n) colors. This is

in contrast with the O(log2 n) colors used by the best known deterministic

algorithm by Fiat et al. [2005] that does not recolor points. We also show

online algorithm for conflict-free coloring points on the plane with respect

to halfplanes that uses Θ(log n) colors and the total number of recolorings is

O(n). For this problem no deterministic algorithm was known before.

From the application point of view, there is motivation to study this

recoloring model. The frequency spectrum is quite expensive, so a solution

which strictly uses a logarithmic number of colors is desirable. On the other

hand excessive recoloring is not desirable, because if a base station is given

another color there is a disruption of service for all agents connected to it.
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Organization. In section 3.2 we define the notion of a k-degenerate hyper-

graph. In section 3.3 we present the general framework for online conflict-free

coloring of hypergraphs. In section 3.4 we introduce the randomized algo-

rithm derived from the framework. In section 3.5 we show deterministic

online algorithms for intervals and halfplanes with recoloring. In section 3.6

we describe the results for the hypergraphs that arise from geometry. Finally,

in section 3.7 we conclude with a discussion and some open problems.

3.2 Preliminaries

We will use the notion of induced hypergraph given in definition 2.1 on page 27

and the notion of Delaunay graph of a hypergraph given in definition 2.6 on

page 40. We give some more definitions.

Here is a graph theoretic common definition:

Definition 3.1. A simple graph G = (V,E) is called k-degenerate (or k-

inductive) for some positive integer k, if every (vertex-induced) subgraph of

G has a vertex of degree at most k.

We sensibly extend to a similar definition for hypergraphs.

Definition 3.2. Let k > 0 be a fixed integer and let H = (V,E) be a

hypergraph on the n vertices v1, . . . , vn. For a permutation π : {1, . . . , n} →
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{1, . . . , n} define the n partial sums, indexed by t = 1, . . . , n,

Sπt =
t∑

j=1

d(vπ(j)),

where

d(vπ(j)) =
∣∣{i < j | {vπ(i), vπ(j)} ∈ G(H({vπ(1), ..., vπ(j)}))}

∣∣ ,
that is, d(vπ(j)) is the number of neighbors of vπ(j) in the Delaunay graph of

the hypergraph induced by {vπ(1), ..., vπ(j)}. Assume that for all permutations

π and for every t ∈ {1, . . . , n} we have

Sπt ≤ kt. (3.1)

Then, we say that H is k-degenerate.

3.3 A framework for online conflict-free col-

oring

Let H = (V,E) be any hypergraph. Our goal is to define a framework that

colors the vertices V in an online fashion, i.e., when the vertices of V are

revealed by an adversary one at a time. At each time step t, the algorithm

must assign a color to the newly revealed vertex vt. This color cannot be

changed in future times t′ > t. The coloring has to be conflict-free for all
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the induced hypergraphs H(Vt) with t = 1, . . . , n, where Vt ⊆ V is the set of

vertices revealed by time t.

For a fixed positive integer h, let A = {a1, . . . , ah} be a set of h auxiliary

colors (not to be confused with the set of main colors used for the conflict-

free coloring: {1, 2, . . . }). Let f : N → A be some fixed function. We now

define the framework that depends on the choice of the function f and the

parameter h.

A table (to be updated online) is maintained with row entries indexed

by the variable i with range in N+. Each row entry i at time t is associated

with a subset V i
t ⊆ Vt in addition to an auxiliary proper non-monochromatic

coloring of H(V i
t ) with at most h colors. We say that f(i) is the color that

represents entry i in the table. At the beginning all entries of the table are

empty. Suppose all entries of the table are updated until time t−1 and let vt

be the vertex revealed by the adversary at time t. The framework first checks

if an auxiliary color can be assigned to vt such that the auxiliary coloring of

V 1
t−1 together with the color of vt is a proper non-monochromatic coloring of

H(V 1
t−1∪{vt}). Any (proper non-monochromatic) coloring procedure can be

used by the framework. For example a first-fit greedy method in which all

colors in the order a1, . . . , ah are checked until one is found. If such a color

cannot be found for vt, then entry 1 is left with no changes and the process

continues to the next entry. If however, such a color can be assigned, then

vt is added to the set V 1
t−1. Let c denote such an auxiliary color assigned to

vt. If this color is the same as f(1) (the auxiliary color that is associated
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with entry 1), then the final color in the online conflict-free coloring of vt is 1

and the updating process for the t-th vertex stops. Otherwise, if an auxiliary

color cannot be found or if the assigned auxiliary color is not the same as

f(1), then the updating process continues to the next entry. The updating

process stops at the first entry i for which vt is both added to V i
t and the

auxiliary color assigned to vt is the same as f(i). Then, the color of vt in the

final conflict-free coloring is set to i.

It is possible that vt never gets a final color. In this case we say that

the framework does not halt. However, termination can be guaranteed by

imposing some restrictions on the auxiliary coloring method and the choice

of the function f . For example, if first-fit is used for the auxiliary colorings

at any entry and if f is the constant function f(i) = a1, for all i, then the

framework is guaranteed to halt for any time t. An example instantiation

of the framework for conflict-free coloring with respect to intervals is given

in example 3.14 on page 84. In section 3.4 we derive a randomized online

algorithm based on this framework. This algorithm always halts, or to be

more precise halts with probability 1, and moreover it halts after a ‘small’

number of entries with high probability. We prove that the above framework

produces a valid conflict-free coloring in case it halts.

Lemma 3.3. If the above framework halts for any vertex vt then it produces

a valid online conflict-free coloring of H.

Proof. Let H(Vt) be the hypergraph induced by the vertices already revealed

at time t. Let S be a hyperedge in this hypergraph and let j be the maximum
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integer for which there is a vertex v of S colored with j. We claim that exactly

one such vertex in S exists. Assume to the contrary that there is another

vertex v′ in S colored with j. This means that at time t both vertices v and

v′ were present at entry j of the table (i.e., v, v′ ∈ V j
t ) and that they both

got an auxiliary color (in the auxiliary coloring of the set V j
t ) which equals

f(j). However, since the auxiliary coloring is a proper non-monochromatic

coloring of the induced hypergraph at entry j, S ∩ V j
t is not monochromatic

so there must exist a third vertex v′′ ∈ S ∩ V j
t that was present at entry j

and was assigned an auxiliary color different from f(j). Thus, v′′ got its final

color in an entry greater than j, a contradiction to the maximality of j in

the hyperedge S. This completes the proof of the lemma.

The above algorithmic framework can also describe some well-known de-

terministic algorithms. For example, if first-fit is used for auxiliary colorings

and f is the constant function, f(i) = a1, for all i, then:

• If the input hypergraph is induced by points on a line with respect to in-

tervals as in example 3.5 then the algorithm derived from the framework

becomes identical to the Unique Maximum Greedy algorithm described

and analyzed in Fiat et al. [2005].

• If the input is a k-degenerate graph (also called k-inductive graph), the

derived algorithm is identical to the first-fit greedy algorithm for col-

oring graphs online. The performance of the first-fit greedy algorithm

for restricted classes of graphs has been analyzed in several papers
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[Gyárfás and Lehel, 1988, Kierstead, 1988, Irani, 1994]. Especially for

k-inductive graphs, the first-fit greedy algorithm is analyzed by Irani

[1994], who proved that it uses O(k log n) colors. Our framework can be

used to give an alternative simpler proof of the aforementioned result

(see Smorodinsky [2008] for details).

3.4 An online randomized conflict-free color-

ing algorithm

There is a randomized online conflict-free coloring algorithm in the oblivious

adversary model that always produces a valid coloring and the number of

colors used is related to the degeneracy of the underlying hypergraph in a

manner described in the following theorem.

Theorem 3.4. Let H = (V,E) be a k-degenerate hypergraph on n vertices.

Then, there exists a randomized online conflict-free coloring algorithm for H

which uses at most O(log1+ 1
4k+1

n) = O(k log n) colors with high probability

against an oblivious adversary.

The algorithm is based on the framework of section 3.3. In order to define

the algorithm, we need to state what is the function f , the set of auxiliary

colors of each entry and the algorithm we use for the auxiliary coloring at each

entry. We use the set A = {a1, . . . , a2k+1}. For each entry i, the representing

color f(i) is chosen uniformly at random from A. We use a first-fit algorithm
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for the auxiliary coloring.

Our assumption on the hypergraph H (being k-degenerate) implies that

at least half of the vertices up to time t that reached entry i (but not nec-

essarily added to entry i), denoted by X t
≥i, have been actually given some

auxiliary color at entry i (that is, |V i
t | ≥ 1

2

∣∣X t
≥i
∣∣). This is due to the fact that

at least half of those vertices vt have at most 2k neighbors in the Delaunay

graph of the hypergraph induced by X t−1
≥i (since the sum of these quantities

is at most k
∣∣X t
≥i
∣∣ and since V i

t ⊆ X t
≥i). Therefore since we have 2k + 1

colors available, there is always an available color to assign to such a vertex.

The following lemma shows that if we use one of these available colors then

the updated coloring is indeed a proper non-monochromatic coloring of the

corresponding induced hypergraph as well.

Lemma 3.5. Let H = (V,E) be a k-degenerate hypergraph and let V j
t be

the subset of V at time t and at level j as produced by the above algorithm.

Then, for any j and t if vt is assigned a color distinct from all its neighbors

in the Delaunay graph G(H(V j
t )) then this color together with the colors

assigned to the vertices V j
t−1 is also a proper non-monochromatic coloring of

the hypergraph H(V j
t ).

Proof. By induction on t. The induction hypothesis is that H(V j
t−1) is prop-

erly non-monochromatically colored by the auxiliary coloring. Let vt be the

vertex added to the hypergraph induced by the j-th entry at time t. Any

hyperedge S that contains at least two vertices of V j
t−1 or does not contain

vt is not monochromatic by the induction hypothesis. Thus, we are only
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concerned with hyperedges of cardinality two that contain vt and exactly

one vertex of V j
t−1. However, we assumed that vt obtained a color that is

distinct from any vertex u such that {u, vt} is a hyperedge of H(V j
t ) (Those

are exactly the neighbors of vt in the corresponding Delaunay graph). Thus,

any such hyperedge {u, vt} is also not monochromatic. This completes the

inductive step and hence the proof of the lemma.

We also prove that for every vertex vt, our algorithm always halts, or

more precisely halts with probability 1.

Proposition 3.6. For every vertex vt, the algorithm halts with probability 1.

Proof. In order for the framework to not halt for vertex vt, it must be the case

that vertex vt reaches every entry i ∈ N+ and in every entry i the auxiliary

color of vt is different from f(i). If an entry is empty at time t and vt reaches

that entry, then the probability that vt does not get a main color in that

entry is 1 − h−1, where h = 2k + 1 is the number of auxiliary colors. The

aforementioned events are independent for empty entries. At time t, all but

at most t− 1 entries are empty. The above discussion implies the following.

Pr[algorithm does not halt for vt] ≤

Pr[algorithm does not color vt in empty entries] =

Pr[
⋂

i : empty entry

(algorithm does not color vt in entry i)] =

∏
i : empty entry

Pr[algorithm does not color vt in entry i] =
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∏
i : empty entry

(1− h−1) = lim
j→∞

(1− h−1)j = 0

and therefore

Pr[algorithm halts for vt] = 1.

We proceed to the analysis of the number of colors used by the algorithm,

proving theorem 3.4.

Lemma 3.7. Let H = (V,E) be a hypergraph and let C be a coloring produced

by the above algorithm on an online input V = {vt} for t = 1, . . . , n. Let

Xi (respectively X≥i) denote the random variable counting the number of

points of V that were assigned a final color at entry i (respectively a final

color at some entry ≥ i). Let Ei = E[Xi] and E≥i = E[X≥i] (note that

X≥i+1 = X≥i −Xi). Then:

E≥i ≤
(

4k + 1

4k + 2

)i−1

n.

Proof. By induction on i. The case i = 1 is trivial. Assume that the state-

ment holds for i. To complete the induction step, we need to prove that

E≥i+1 ≤ (4k+1
4k+2

)in. By the conditional expectation formula, we have for any

two random variables X, Y that E[X] = E[E[X | Y ]]. Thus,

E≥i+1 = E[E[X≥i+1 | X≥i]] = E[E[X≥i −Xi | X≥i]] = E[X≥i − E[Xi | X≥i]].

It is easily seen that E[Xi | X≥i] ≥ 1
2

X≥i

2k+1
since at least half of the vertices
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of X≥i got an auxiliary color by the above algorithm. Moreover each of those

elements that got an auxiliary color had probability 1
2k+1

to get the final

color i. This is the only place where we need to assume that the adversary

is oblivious and does not have access to the random bits. Thus,

E[X≥i − E[Xi | X≥i]] ≤ E[X≥i −
1

2(2k + 1)
X≥i] =

4k + 1

4k + 2
E[X≥i] ≤

(
4k + 1

4k + 2

)i
n,

by linearity of expectation and by the induction hypotheses. This completes

the proof of the lemma.

Lemma 3.8. The expected number of colors used by the above algorithm is

at most log 4k+2
4k+1

n+ 1.

Proof. Let Ii be the indicator random variable for the following event: some

points are colored with a main color in entry i. We are interested in the

number of colors used, that is Y :=
∑∞

i=1 Ii. Let b(k, n) = log(4k+2)/(4k+1) n.

Then,

E[Y ] = E[
∑
1≤i

Ii] ≤ E[
∑

1≤i≤b(k,n)

Ii] + E[X≥b(k,n)+1] ≤ b(k, n) + 1,

by Markov’s inequality and lemma 3.7.
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We notice that:

b(k, n) =
lnn

ln 4k+2
4k+1

≤ (4k + 2) lnn = O(k log n).

We also have the following concentration result:

Pr[more than cb(k, n) colors are used] =

Pr[X≥cb(k,n)+1 ≥ 1] ≤ E≥cb(k,n)+1 ≤
1

nc−1
,

by Markov’s inequality and by lemma 3.7.

This completes the performance analysis of our algorithm.

Remark 3.9. In the above description of the algorithm, all the random bits

are chosen in advance (by deciding the values of the function f in advance).

However, one can be more efficient and calculate the entry f(i) only at the

first time we need to update entry i, for any i. Since at each entry we need to

use O(log k) random bits and we showed that the number of entries used is

O(k log n) with high probability then the total number of random bits used

by our algorithm is O(k log k log n) with high probability.
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3.5 Deterministic online algorithms with re-

coloring

In this section, we relax the requirement that an online algorithm has to

commit to the color of every point, by allowing the algorithm to recolor

a ‘few’ of the points that have appeared in the past. Our goal is to find

deterministic online algorithms that use a logarithmic number of colors and

perform a total number of recolorings which is linear in n. We manage to

find such algorithms with respect to intervals and halfplanes. The algorithm

for halfplanes relies on an algorithm that colors points on a disk with respect

to circular arcs, where the adversary can additionally ask the algorithm to

substitute a set of consecutive points on the disk with a single point (we call

this a substitution move). As always, the coloring must remain conflict-free

at all times.

3.5.1 An O(log n) colors algorithm for intervals

We describe a deterministic online conflict-free coloring algorithm for inter-

vals that is allowed to recolor just a single old point during each insertion

of a new point. The algorithm is based on the framework developed in sec-

tion 3.3 where we use 3 auxiliary colors {a, b, c} and f is the constant function

f(l) = a, for every l. We refer to points colored with b or c as d-points. In

order to have only a logarithmic number of entries, we slightly modify the

framework (using a recoloring procedure) such that the number of points col-
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ored with a in each entry of the table is at least one third of the total points

that reach that entry. To achieve this goal, our algorithm maintains the fol-

lowing invariant in every level: There are at most two d-points between every

pair of points colored with a (i.e., between every pair that are consecutively

colored a among the a-points). Therefore, at least a third of the points at

each entry get color a, and two thirds are deferred for coloring in a higher

entry. The total number of colors is at most log3/2 n+ 1. When a new point

p arrives, it is colored according to the following algorithm, starting from

entry 1:

• If p is not adjacent to a point colored with an auxiliary color a then p

is assigned auxiliary color a and gets its final color in that entry.

• We color point p with b or c greedily as long as it does not break the

invariant that between any two consecutive a’s we have at most two

d-points.

• It remains to handle the case where the new point p has a point colored

with a on one side and a point, say q, colored with d on the other side,

such that q has no adjacent point colored with a. We assign to p the

auxiliary color of q (thus it is a d-point) in the current entry and in all

higher entries for which q obtained an auxiliary color and assign to it

the main color of q, and we recolor q with the auxiliary color a (and

delete the corresponding appearance of it in all higher entries of he

table), and thus we recolor q with the main color of the current entry.
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At this point all points have an assignment of main colors. It is not

hard to check that when we recolor a point then we do not violate the

invariants at any entry: Let ` be the entry that caused recoloring, all

entries before it remain the same, the change in the entry ` does not

break invariants, all other entries remain the same except that point p

appears there instead of point q that was there before and there are no

points between p and q that appear in an entry higher than `.

In the following, we give an example run of the recoloring algorithm.

Example 3.10. An example run of the recoloring algorithm is shown in

figure 3.1 for input π = 3754612. Vertex vt appears at time t, where t ranges

from 1 to 7. The first row of the table represents the order in which points

appeared, the last row of the table shows current color allocation. At every

time step of the run, points whose colors were changed (a new color, or a

recoloring) by the last insertion are marked with bold.

Recolorings happen at t = 3 for v2, at t = 5 for v3, and at t = 7, for v6.

It can be easily checked that the recoloring algorithm produces a valid

conflict-free coloring, because it is essentially an instance of the general frame-

work: After every insertion (and a possible recoloring), the point of highest

entry in each interval is uniquely colored.

Also, it can be proven that the number of recolorings is at most n −

(blg nc+ 1), and this is tight.
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· · v1 · · · ·
1 a
2
3
· · 1 · · · ·

· · v1 · · · v2

1 a d
2 a
3
· · 1 · · · 2

· · v1 · v3 · v2

1 a d a
2 a
3
· · 1 · 2 · 1

· · v1 v4 v3 · v2

1 a d d a
2 d a
3 a
· · 1 3 2 · 1

· · v1 v4 v3 v5 v2

1 a d a d a
2 d a
3 a
· · 1 3 1 2 1

v6 · v1 v4 v3 v5 v2

1 d a d a d a
2 a d a
3 a

2 · 1 3 1 2 1

v6 v7 v1 v4 v3 v5 v2

1 a d a d a d a
2 a d a
3 a

1 2 1 3 1 2 1

Figure 3.1: An example run of the recoloring algorithm

Proposition 3.11. The number of recolorings in the above algorithm equals

n− (blg nc+ 1) in the worst case.

Proof. An input with n vertices uses at least blg nc + 1 colors (see optimal

static coloring of points with respect to intervals in section 2.1). Whenever a

new color is introduced during the run of the algorithm, there is no recoloring.

Therefore, there are at most n − (blg nc + 1) recolorings, because in every

other insertion at most one old point is recolored.

Now, we are going to show a family of instances for which the above

algorithm performs exactly n− (blg nc+ 1) recolorings. We use the relative

positions notation for the input, that we introduced in section 2.2 on page 32.

We define, for k ≥ 1, an instance σk of length n = 2k − 1 for which
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our recoloring algorithm uses k colors and does 2k − k − 1 recolorings. The

instance σ1 = 0. For k ≥ 1, the instance σk+1 is defined recursively.

σk+1 = σk ◦ (2k − 1, . . . , 2k − 1)︸ ︷︷ ︸
2k times

where ‘◦’ is the concatenation operation for finite sequences (also mentioned

in chapter 2). Since, for every k, σk is a prefix of σk+1, we have in fact

provided an unbounded length relative positions input

σ = 20 − 1︸ ︷︷ ︸
20

, 21 − 1, 21 − 1︸ ︷︷ ︸
21

, 22 − 1, . . . , 22 − 1︸ ︷︷ ︸
22

, . . . , 2k − 1, . . . , 2k − 1︸ ︷︷ ︸
2k

, . . .

or

σ = 0, 1, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, . . .

The following can be proven by induction and we omit the easy but

tedious details. For each σk, the recoloring algorithm produces the coloring

Ck, defined recursively as C1 = 1 and Ck = Ck−1 ◦ (k) ◦ Ck−1, for k > 1.

Therefore for t < 2k, input σ is using at most k colors. The point inserted

at t = 2k, which is the first point of σk+1 (or σ) that is inserted at relative

position 2k− 1, is colored with a new color k+ 1, and therefore no recoloring

happens. For all subsequent 2k−1 points inserted at relative position 2k−1,

there is a recoloring by the algorithm. For example, the run of the recoloring

algorithm on input σ3 is shown in figure 3.2, where recolorings are shown

with bold.
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v1 · · · · · ·
1 a
2
3

1 · · · · · ·

v1 · v2 · · · ·
1 a d
2 a
3

1 · 2 · · · ·

v1 v3 v2 · · · ·
1 a d a
2 a
3

1 2 1 · · · ·

v1 v3 v2 · · · v4

1 a d a d
2 a d
3 a

1 2 1 · · · 3

v1 v3 v2 · · v5 v4

1 a d a d a
2 a d
3 a

1 2 1 · · 3 1

v1 v3 v2 · v6 v5 v4

1 a d a d d a
2 a d a
3 a

1 2 1 · 3 2 1

v1 v3 v2 v7 v6 v5 v4

1 a d a d a d a
2 a d a
3 a

1 2 1 3 1 2 1

Figure 3.2: The run of the recoloring algorithm on input σ3

Therefore, for all points, except the ones inserted at t = 1, 2, 4, . . . , 2k,

. . . a recoloring happens, and therefore after n insertions, n − (blg nc + 1)

recolorings happen in σ.

3.5.2 An O(log n) colors algorithm for circular arcs

We define a hypergraph H closely related to the one induced by intervals:

The vertex set of H is represented as a finite set P of n distinct points on a

circle C and its hyperedge set consists of all intersections of the points with

some circular arc of C. In the static case, it is not difficult to show that n

points can be optimally conflict-free colored with respect to circular arcs with

blg(n− 1)c+ 2 colors: There must be a point p with unique color in P , and



panagiotis cheilaris conflict-free coloring 76

therefore all circular arcs that include p have the conflict-free property; the

remaining n− 1 points of P \ {p} and the remaining circular arcs induce the

same hypergraph as the set of intervals on n − 1 points, which is optimally

colored with blg(n− 1)c+ 1 more colors. Here, we are interested in an online

setting, where the set P ⊂ C is revealed incrementally by an adversary,

and, as usual, the algorithm has to commit to a color for each point without

knowing how future points will be requested. Algorithms for intervals can

be used almost verbatim for circular arcs. In fact, the recoloring algorithm

for intervals, given in section 3.5.1, can be used verbatim, if the notion of

adjacency of points is adapted to the closed curve setting (for n ≥ 3, each

point has exactly 2 immediate neighboring points, whereas in the intervals

case, the two extreme points have only one neighbor). Again, in each entry

`, at least a third of the points is assigned auxiliary color a, and thus at most

log3/2 n+ 1 colors are used.

3.5.3 An O(log n) colors algorithm for circular arcs with

substitution of points

We consider a variation on the problem of online conflict-free coloring with

respect to circular arcs that was given in section 3.5.2. In this new variation,

the adversary has, in addition to the ‘insertion move’ of a new point, a

‘substitution move’:

The adversary can substitute a set Q of already requested consec-
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utive points with a single new point p, and the algorithm has to

color p, such that the whole set of points is conflict-free colored

with respect to circular arcs (in that new set, p is included, but

all points in Q are removed).

Our algorithm for this variation of the problem relies on the one given

in section 3.5.2. For an insertion move of the adversary, it colors the new

point like in section 3.5.2. For a substitution move of the adversary, it colors

the new point p, with the highest color occurring in the points of Q. Point

p also gets the entries of the unique point q ∈ Q with the highest color. It

is not difficult to see that the coloring remains conflict-free after each move.

We remark that a recoloring can happen only in an insertion move and that

substitution moves do not make the algorithm introduce new colors. The

following is true for every t:

Lemma 3.12. After t moves, the above coloring algorithm uses at most

log3/2 t+ 1 colors.

Proof. During a substitution move we might break the invariant that between

any pair of consecutive a’s there are at most two d-points. However if we

denote in each entry a point colored with a which was substituted by ā, then

it can be proven that between any two consecutive points colored with a

or ā, there are at most two d-points and thus it implies that at least one

third of the points in every level are colored either by that level or have been

substituted. We call these points colored with ā ghost points. Moreover, we
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assign ghost points to substitution points as follows. If a point p substitutes

a point p′ colored with a, p′ becomes a ghost point and p is assigned the ghost

point p′. If a point p substitutes a point q which has some ghost points, p is

assigned all ghost points of q. We ignore the trivial substitution of one point

colored with a and do not create a ghost point and any assignment in this

case. It is not difficult to see that at any point in time each ghost point is

assigned to exactly one non-ghost point.

We intend to make the above argument formal as follows. We will prove

the stronger result that the number of colors used by the algorithm is at most

log3/2 i + 1, where i is the number of insertion moves until time t. In order

to prove the previous statement it is enough to show that at each entry `,

the number of points getting auxiliary color d in entry ` is bounded by the

number of insertion moves that reached entry ` as follows.

d` ≤ d2
3
i`e (3.2)

where d` is the number of points getting auxiliary color d in entry ` and i`

is the number of insertion moves that reached entry `. The above inequality

is true when no points have reached entry `. Moreover, it remains true as

long as a substitution move happens, or an insertion move happens in which

the point at entry ` is colored with a. The number of d’s increases only if

there is an insertion move where the point at level ` is colored with d. We

will study further this last case. For a new point p to get auxiliary color d
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it must be the case that it is inserted next to a point colored with a and a

point q colored with d such that q is adjacent to a point colored with a. In

a fixed entry `, we call a maximal set of consecutive points colored with d

a strip. The length of a strip s is the number of d’s in it and is denoted by

len(s). It is not difficult to see that if there is at least one a in entry `, as in

our case, the number of strips is the same as the number of a’s.

The number of insertion moves that reach entry ` satisfies the following

equation.

i` ≥ a` + d` + ā` (3.3)

where a` is the number of points colored with a, and ā` the number of ghost

points (points substituted that were colored with a). We have an inequality,

because we omit the points substituted that were colored with d. If a strip

s has length len(s) > 2, it necessarily contains ghost points. In fact if a

strip s has length len(s), one can prove that points in it have been assigned

at least d1
2
len(s)e − 1 ghost points. We defer the proof of the above fact to

lemma 3.13. Because of all the above, inequality (3.3) implies the following.

i` ≥ a` +
∑
s : strip

len(s) +
∑
s : strip

(d1
2
len(s)e − 1) =

∑
s : strip

d3
2
len(s)e

The above inequality implies

b2
3
ilc ≥ b2

3

∑
s : strip

d3
2
len(s)ec ≥ b

∑
s : strip

len(s)c =
∑
s : strip

len(s) = d`
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which is inequality (3.2).

Lemma 3.13. The points in a strip s have been assigned at least d1
2
len(s)e−1

ghost points.

Proof. We prove the above fact by induction on t. For t = 0 it is trivially

true. For length of a strip at most two, again it is trivially true because

d1
2
len(s)e−1 = 0. We ignore trivial substitutions of one point colored with a

because they do not change the lengths of the strips and do not create ghost

points. Assume there is a strip of length greater than two. Necessarily, the

last action in the strip was a substitution move, because in an insertion the

algorithm never colors with d, if there are already two d points in the strip.

There are two possible cases for a substitution move.

In the first case, there is a substitution of only d points as shown in

figure 3.3, i.e., the substitution is completely contained in one strip, say

of length L′, and the new strip created has length L ≤ L′. In this case,

L′︷ ︸︸ ︷
dddd dddd. . .ddddd︸ ︷︷ ︸

substitution

dd

Figure 3.3: A substitution move contained in one strip

the number of ghost points in the new strip is the same as the number of

ghost points in the old strip, which is, by the inductive hypothesis, at least

d1
2
L′e − 1, which is at least d1

2
Le − 1.

In the second case, the substitution spans more than one strip, i.e., also

some (non-ghost) points colored with a. Say that the substitution spans k
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a’s which are surrounded by k + 1 strips of lengths L1, . . . , Lk+1, as shown

in figure 3.4. The length of the new strip is L ≤ L1 + Lk+1 + 1 if k ≥ 2,

L1︷ ︸︸ ︷
dddddd a

L2︷ ︸︸ ︷
ddddd a. . .a

Lk︷ ︸︸ ︷
ddddd a︸ ︷︷ ︸

substitution

Lk+1︷︸︸︷
dddd

Figure 3.4: A substitution move spanning more than a strip

and L ≤ L1 + L2 if k = 1 (this last inequality is true because there can be

no trivial substitution). In this case, the number of ghost points in the new

strip is the same as the number of ghost points in the k + 1 strips plus k,

which is at least

k+1∑
i=1

(d1
2
Lie − 1) + k ≥ d1

2

k+1∑
i=1

Lie − 1 ≥ d1
2
Le − 1

In the above, we used the inductive hypothesis for each of the k+1 strips.

3.5.4 An O(log n) colors algorithm for halfplanes

In this section we describe a deterministic algorithm for online conflict-free

coloring points with respect to halfplanes that uses O(log n) colors and per-

forms O(n) recolorings. Thus, it can also be modified for conflict-free coloring

points in the plane with respect to unit disks as described in section 3.6 (see

proof of corollary 3.17). At every time instance t, the algorithm maintains

the following invariant (Vt is the set of points that have appeared so far):

All points (strictly) inside the convex hull of Vt are colored with
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the same special color, say ‘?’. The set of points on the convex

hull of Vt, denoted by CH(Vt), are colored with another set of

colors, such that every set of consecutive points on the convex

hull has a point with a unique color.

Every non-empty subset of points of Vt induced by a halfplane contains a set

of consecutive points on the convex hull of Vt, and thus the whole coloring

is conflict-free. If one considers the points of CH(Vt) in their circular order

on the convex hull, it is enough to conflict-free color them with respect to

circular arcs. The number of colors used in CH(Vt) must be logarithmic in t.

We describe how the algorithm maintains the above invariant. A new

point vt+1 that appears at time t + 1 is colored as follows: If it is inside the

convex hull of Vt, then it gets color ‘?’. Otherwise, the new point vt+1 will be

on CH(Vt+1), in which case we essentially use the algorithm of section 3.5.3

to color it. We have two cases, which correspond to a substitution and an

insertion move, respectively:

• It might be the case that vt+1 forces some points (say they comprise

set Q) that were in CH(Vt) to appear in the interior of CH(Vt+1), so

in order to maintain the invariant, all points in Q are recolored to ‘?’,

and vt+1 is colored with the maximum color occurring in Q (this is like

a substitution move of section 3.5.3).

• If, on the other hand, no points of CH(Vt) are forced into the convex

hull, then point vt+1 ∈ CH(Vt+1) is colored like in an insertion move of
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section 3.5.3, with the algorithm for circular arcs. In that last case, in

order to maintain logarithmic number of colors on t, one recoloring of

a point in CH(Vt+1) might be needed.

The total number of recolorings is guaranteed to be O(n), because for every

insertion, at most one recoloring happens on the new convex hull, and every

point colored with ‘?’ keeps that color for the rest of the algorithm run.

3.6 Application to geometry

Our randomized algorithm has applications to conflict-free colorings of cer-

tain geometric hypergraphs studied in Chen [2006], Fiat et al. [2005], Kaplan

and Sharir [2004], Chen et al. [2007]. We obtain the same asymptotic re-

sult as in Chen [2006] and Chen et al. [2007] but with better constant of

proportionalities and using much fewer random bits. For example, if the

hypergraph H is induced by intervals, it can be proven (with an analysis

similar to the one given in section 3.4) that for any order of insertion of n

points, when the auxiliary color for each entry is chosen uniformly at random

from {a, b, c}, the expected number of colors used is bounded by log3/2 n+ 1.

It is interesting that the best known upper bound for dynamically color-

ing n points deterministically, when the whole insertion order is known in

advance, is also log3/2 n + 1 (see Bar-Noy et al. [2006] and section 2.3 for

further details). In our algorithm the expected number of colors is bounded

by 1+log3/2 n ≈ 1.71 log2 n, whereas in Chen [2006] and Chen et al. [2007] by
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1 + log8/7 n ≈ 5.19 log2 n, three times our bound. We provide a run example

for the algorithm on intervals.

Example 3.14. Consider the case where the hypergraph is induced by points

with respect to intervals. Namely V = (1, . . . , n) and E consists of all possible

discrete intervals of V (i.e., subsets of consecutive integers). Vertices appear

one by one and at each time t we must have an online conflict-free coloring

with respect to the discrete interval subsets of the t points revealed by time t.

It is not difficult to see that the hypergraphs H(V i
t ) can always be properly

non-monochromatically online 3-colored (say with auxiliary colors a, b, c)

as follows: Each newly inserted point has at most two immediate neighbors

and thus even a first-fit coloring suffices. In figure 3.5, we exhibit a run of

the algorithm for the permutation π = 253164, seen as a mapping from time

t ∈ {1, . . . , 6} to the corresponding vertex at position π(t).

In the end the vertices look like π−1 = v4v1v3v6v2v5, where vt is the

vertex appearing at time t. The choices are f(1) = b, f(2) = a, f(3) = c,

f(4) = a, f(5) = b, f(6) = a. The six tables correspond to t = 1, . . . , 6 and

at the bottom of each table the online conflict-free coloring, so far, is shown.

Entries correspond to rows in the tables, where for each entry i the following

data is given: the representing color f(i) and the proper non-monochromatic

auxiliary coloring of the vertices in the hypergraph V i
t with three colors a, b

or c.

Observe that entries 3 and 5, respectively, do not have a vertex colored

with f(3) and f(5), respectively. As a consequence colors 3, 5 do not appear
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i f(i) · v1 · · · ·
1 b a
2 a a
3
4
5
6

· 2 · · · ·

i f(i) · v1 · · v2 ·
1 b a b
2 a a
3
4
5
6

· 2 · · 1 ·

i f(i) · v1 v3 · v2 ·
1 b a c b
2 a a b
3 c a
4 a a
5
6

· 2 4 · 1 ·

i f(i) v4 v1 v3 · v2 ·
1 b b a c b
2 a a b
3 c a
4 a a
5
6

1 2 4 · 1 ·

i f(i) v4 v1 v3 · v2 v5

1 b b a c b a
2 a a b a
3 c a
4 a a
5
6

1 2 4 · 1 2

i f(i) v4 v1 v3 v6 v2 v5

1 b b a c a b a
2 a a b c a
3 c a b
4 a a b
5 b a
6 a a

1 2 4 6 1 2

Figure 3.5: A run example of the framework for hypergraphs induced by
points with respect to intervals
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in the conflict-free coloring although colors 1, 2, 4, 6 do. If it is important to

use consecutive colors, namely k different colors implies they are {1, . . . , k},

the above problem can be fixed by assigning the next unused conflict-free

color to an entry i only as soon as a vertex in entry i is colored with auxiliary

color f(i). The above remedy works in our general framework, not only in

the specific case of this example.

When H is the hypergraph obtained by points in the plane intersected

by halfplanes or unit disks, we obtain online randomized algorithms that use

O(log n) colors with high probability. Before proceeding it is necessary to

prove a degeneracy result about hypergraphs induced by halfplanes.

Lemma 3.15. Let V be a finite set of n points in the plane and let E be all

subsets of V that can be obtained by intersecting V with a halfplane. Then

the hypergraph H = (V,E) is 3-degenerate.

Proof. We assume that points are in general position, i.e., no three of them

are on the same line. We also assume that points are inserted in some order

v1, v2, . . . , vn. Following the notation of definition 3.2 on page 59, it is

enough to prove that for every t, we have

St ≤ 3t (3.4)

(we remark that we have dropped the permutation π, appearing in inequal-

ity (3.1) on page 60, because it is implied by the order v1, v2, . . . , vn). We
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prove something stronger than inequality (3.4), namely that

St + Ct ≤ 3t, (3.5)

by induction, where Ct is the number of points on the boundary of the convex

hull at time t, which is always a positive number. It will be helpful to define

the following differences:

∆St = St − St−1,

∆Ct = Ct − Ct−1.

The difference ∆St is exactly the number of neighbors of vt in the Delaunay

graph G(H({v1, . . . , vt})). For vt to be a neighbor of vt′ , with t′ < t, in the

Delaunay graph, there must exist a halfplane at time t which contains exactly

vt and vt′ .

First, we show that inequality (3.5) is true for small values of t. For

t ∈ {1, 2, 3}, inequality (3.5) is true as exhibited in table 3.1, because the

size of the convex hull is the same as the number of points and every two

points are neighbors in the Delaunay graph.

Then, for the inductive step, for t > 3, it is enough to prove that

∆St +∆Ct ≤ 3, (3.6)

because then the sum St + Ct increases at most by 3 at every time step and
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t 1 2 3

St 0 1 3
Ct 1 2 3

St + Ct 1 3 6

Table 3.1: Edges in Delaunay graph for halfplanes and size of convex hull for
small values of t

therefore always remains bounded by 3t. Denote the convex hull of points

{v1, . . . , vt} with CHt. Consider the following two cases. Either vt lies outside

of the convex hull CHt−1 or vt is inside the convex hull CHt−1.

Assume vt lies outside of the convex hull CHt−1 (see figure 3.6). Then vt

vt

CHt−1

vt

CHt

Figure 3.6: The new point is outside the old convex hull

lies on the boundary of the boundary of the convex hull CHt. Consider the

two points u and w that are the neighbors of vt in the cyclic order of points

on the convex hull CHt (see figure 3.7). Consider the line ` passing through

u and w. This line partitions points of CHt−1 in two types: (a) points on ` or

in the same halfplane as vt defined by ` (points like u, v′, w in figure 3.7) and

(b) points on the other halfplane defined by ` (points like v′′ in figure 3.7).

Vertex vt is adjacent to every vertex v′ of type (a) (including u, w) in the
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vt

u

w

`

v′

v′′

Figure 3.7: Delaunay graph neighbors of a new point outside the old convex
hull

Delaunay graph, because one can take a halfplane with defining line passing

through v′ and slope between the slopes of the incident sides to v′ of the

convex hull CHt−1, and this halfplane contains only vt and v′. On the other

hand, no vertex v′′ of type (b) is a neighbor in the Delaunay graph with vt,

because every halfplane that contains vt and v′′ must contain at least one of

u, w. Assume there are d vertices of CHt−1 of type (a), with d ≥ 2. Then,

∆St = d and d−2 of them no longer appear on the convex hull, but vt appears

on CHt, i.e., ∆Ct = −(d − 2) + 1. Therefore, we have proved that when vt

lies outside CHt−1, ∆St + ∆Ct = d +−(d− 2) + 1 = 3, i.e., inequality (3.6)

is true.

Assume vt is inside the convex hull CHt−1 (see figure 3.8). Then, consider

any triangulation of CHt−1. Point vt is in exactly one triangle of the triangu-

lation, call it xyz, where x, y, z are points on the convex hull, corresponding

to points inserted before vt. It is not difficult to prove that every halfplane
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vt

CHt−1 = CHt

z

x y

Figure 3.8: A triangulation of the convex hull in case the point vt is in the
convex hull CHt−1

that contains vt, contains at least one of x, y, z. Therefore vt can have at

most three neighbors in the Delaunay graph. The three neighbors case can

be realized when the only points on the convex hull are x, y, z, i.e., when

t = 4, by taking for every point p ∈ {x, y, z} a halfplane that contains p,

and the defining line of the halfplane (a) is passing through vt and (b) is

parallel to the line passing through the other two points in {x, y, z}. If there

are more than three points in CHt−1, we will prove that it is not possible

for vt to have all three neighbors x, y, z in the Delaunay graph. Assume

for the sake of contradiction that there is a halfplane hx containing only vt

and x, a halfplane hy containing only vt and y, and a halfplane hz containing

only vt and z. For every point p ∈ {x, y, z} define the halfline starting at vt

with direction −→pvt, not containing p. These halflines are shown in figure 3.9.

These three halflines partition the plane into three areas, Ax, Ay, Az, each

one containing one of the points x, y, z, respectively. We now consider half-

planes containing at least vt. It is not difficult to see that such a halfplane

containing only x and not y or z must contain all of Ax. Similarly, such a
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vt

z

x y

Az

Ax

Ay

Figure 3.9: A partition of the plane

halfplane containing only y and not x or z must contain all of Ay, and such a

halfplane containing only z and not x or y must contain all of Az. Therefore,

any other point contained in CHt−1 except x, y, z must be contained in one

of hx, hy, and hz, which is a contradiction. Thus, we have proved that when

vt is in CHt−1, ∆St ≤ 3 and ∆Ct = 0, i.e., inequality (3.6) is true.

Corollary 3.16. Let H be a hypergraph as in lemma 3.15. Then, the ex-

pected number of colors used by our randomized online conflict-free coloring

algorithm applied to H is at most log 14
13
n+1, in the oblivious adversary model.

Also the actual number of colors used is O(log 14
13
n) with high probability. The

number of random bits is O(log n) with high probability.

Proof. The proof follows immediately from lemma 3.15, lemma 3.8 and the-

orem 3.4.

Corollary 3.17. Let V be a set of n points in the plane and let E be the set

of all subsets of V that can be obtained by intersecting V with a unit disk.



panagiotis cheilaris conflict-free coloring 92

Then, there exists a randomized online algorithm for conflict-free coloring H

which uses O(log n) colors and O(log n) random bits with high probability,

against an oblivious adversary.

Proof. Kaplan and Sharir [2004] observed that by an appropriate partition-

ing of the plane one can modify any online algorithm for conflict-free coloring

points with respect to halfplanes to an online algorithm for conflict-free col-

oring points with respect to congruent disks. The congruent disks algorithm

uses a constant multiple of the colors used by the halfplanes algorithm. Us-

ing the same technique as developed in Kaplan and Sharir [2004] and corol-

lary 3.16 we obtain the desired result.

3.7 Discussion and open problems

We presented a framework for online conflict-free coloring any hypergraph.

This framework coincides with some known algorithms in the literature when

restricted to some special underlying hypergraphs. We derived a randomized

online algorithm for conflict-free coloring any hypergraph (in the oblivious

adversary model) and showed that the performance of our algorithm depends

on a parameter which we refer to as the degeneracy of the hypergraph which

is a generalization of the known notion of degeneracy in graphs (i.e., when

the hypergraph is a simple graph then our notion is similar to the classical

definition of degeneracy of a graph; see definition 3.1). Specifically, if the

hypergraph is k-degenerate then our algorithm uses O(k log n) colors with
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high probability, which is asymptotically optimal for any constant k, and

O(k log k log n) random bits. This is the first efficient online conflict-free

coloring for general hypergraphs and subsumes all the previous randomized

algorithmic results of Chen [2006], Fiat et al. [2005], Kaplan and Sharir [2004],

Chen et al. [2007]. It also substantially improves the efficiency with respect

to the amount of randomness used in the special cases studied in Chen [2006],

Fiat et al. [2005], Kaplan and Sharir [2004], Chen et al. [2007].

Another interesting fact to note is that our algorithm when applied to

k-degenerate graphs gives an online coloring of such graphs with O(k log n)

colors with high probability. Irani [1994] showed that the same bound is

achieved deterministically by the first-fit greedy algorithm.

It would be interesting to find an efficient online deterministic algorithm

for conflict-free coloring k-degenerate hypergraphs. Even for the very special

case of a hypergraph induced by points and intervals (as in example 3.14

where the number of neighbors of the Delaunay graph of every induced hy-

pergraph is at most two), the best known deterministic online conflict-free

coloring algorithm from Fiat et al. [2005] uses Θ(log2 n) colors. We hope that

our technique together with a possible clever derandomization technique can

shed light on this problem.

As mentioned already, the framework of section 3.3 can describe some

known algorithms such as the Unique Max Greedy of Fiat et al. [2005] for on-

line conflict-free coloring points on a line with respect to intervals. No sharp

asymptotic bounds are know for the performance of Unique Max Greedy.
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The best known upper bound is linear (asymptotically n/2 from Bar-Noy

et al. [2006, 2008]), whereas the best known lower bound is Ω(
√
n). We be-

lieve that this new approach could help analyze the performance of Unique

Max Greedy.

In section 3.5 we initiate the study of online conflict-free coloring with

recoloring: We provide a deterministic online conflict-free coloring for points

on the real line with respect to intervals and show that our algorithm uses

Θ(log n) colors and at most one recoloring per insertion. This is in contrast

with the best known deterministic online conflict-free coloring for this case

that uses Θ(log2 n) colors in the worst case without recoloring, by Fiat et al.

[2005]. We also present deterministic online algorithms for conflict-free color-

ing points with respect to circular arcs and halfplanes (and unit disks) that

use O(log n) colors and O(n) recolorings in the worst case. In the special

case of intervals or circular arcs at most one point is recolored per insertion.

It would be interesting to find a deterministic online conflict-free coloring

algorithm for points in the plane with respect to halfplanes that uses Θ(log n)

colors in the worst case and recolors at most a constant number of points per

insertion. We leave this as an open problem for further research.

All of our randomized algorithms assume the oblivious adversary model,

in which the adversary has to commit to a specific input sequence before

revealing the first vertex to the algorithm without knowing the random bits

that the algorithm is going to use and the expected number of colors is

analyzed. The randomized model can be seen as a relaxation of the strict
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deterministic model: some power is taken from the adversary, or equivalently

given to the algorithm, in order to achieve just a logarithmic number of col-

ors. Another such relaxation, introduced in chapter 2 and Bar-Noy et al.

[2006], is to give extra information to the algorithm about where each re-

quested point will end up in the final coloring (the ‘absolute positions’ model

described in section 2.4). Other such relaxations are given in section 2.5 (col-

oring with respect to rays) and Schiermeyer et al. [2000] (online ranking of

paths). In this chapter we introduced yet another relaxation, the recoloring

model, in which the algorithm is allowed to recolor some of the points. An

interesting question is to construct O(log n) colors algorithms that rely as

little as possible on their extra power (as few random bits as possible, as

few recolorings as possible). Towards that goal, in a unified framework, we

provided the best known results: randomized algorithm that use an expected

logarithmic number of random bits, and recoloring algorithms that perform

at most a linear number of recolorings.



Chapter 4

Variations on conflict-free

coloring

In this chapter, we study some variations on conflict-free coloring with respect

to intervals. First, we study a variation in which only a given subset of

intervals is required to have the conflict-free property. For this problem, we

provide a polynomial time 2-approximation algorithm, i.e., an algorithm that

for every input computes a coloring which uses at most 2 times the number of

colors of an optimal solution, improving on a 4-approximation algorithm by

Katz et al. [2007]. Conflict-free coloring with respect to intervals can also be

seen as a vertex coloring of a chain or path graph in which there is a unique

color in every subpath of the graph. Starting from that point, we generalize to

conflict-free coloring the vertices of a general graph with respect to all paths

in the graph and present some results. We also consider vertex conflict-free

96
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colorings of graphs with respect to neighborhoods of the graph. We prove,

among other things, that for a graph with n vertices 2
√
n colors are enough

to conflict-free color with respect to neighborhoods and sometimes Ω(
√
n)

colors are necessary. Finally, we initiate the study of Ramsey-type problems

for conflict-free colorings and compute a van der Waerden-like number.

4.1 Conflict-free coloring with respect to a

set of intervals

We describe a general algorithm for computing a conflict-free coloring of a hy-

pergraph, which is based on computing minimal hitting sets in hypergraphs.

For a hypergraph induced by a set of intervals, we propose a way to compute

hitting sets that gives rise to a 2-approximation conflict-free coloring algo-

rithm. We also prove that our analysis of the algorithm is best possible, by

providing tight instances.

4.1.1 A hitting set algorithm for conflict-free coloring

In this section, we present an algorithm for conflict-free coloring a hyper-

graph. It is based on repeatedly computing a minimal hitting set in hyper-

graphs.

Definition 4.1. A hitting set of a hypergraph H = (V,E) is a subset S ⊆ V

such that for every e ∈ E there exists some v ∈ S with v ∈ e. A hitting set
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S is minimal if for every v ∈ S, S \ {v} is not a hitting set.

So far, in the problems we have studied, a conflict-free coloring is an

assignment of colors (positive integers) to the vertices of the hypergraph.

Here we consider a slight variation of conflict-free coloring, in which, we

allow some vertices to not be assigned colors, as long as there is in every

hyperedge a vertex with assigned color, that is uniquely occurring in the

hyperedge, namely the coloring function C : V → N+ is a partial function.

Alternatively, we can use a special color ‘0’ given to vertices that are not

assigned any positive color and have a total function C : V → N.

Remark 4.2. We claim that this setting, with the partial coloring function,

is interesting from the point of view of applications. As mentioned in sec-

tion 1.2, vertices model base stations in a cellular network. A vertex with no

color assigned to it can model a situation where a base station is not acti-

vated at all, and therefore the base station does not consume energy. One can

think of a bi-criteria optimization problem where a conflict-free assignment

of frequencies has to be found with small number of frequencies (in order to

conserve the frequency spectrum) and few activated base stations (in order

to conserve energy).

In this setting, we describe an algorithm for conflict-free coloring any

hypergraph H = (V,E) in figure 4.1.

Claim 4.3. The algorithm terminates.

Proof. At every iteration of the loop, there is some hyperedge e ∈ E` for
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`← 0; V 0 ← V ; E0 ← E
while E` 6= ∅ do:

S` ← a minimal hitting set for (V `, E`)
color every v ∈ V ` \ S` with color `
V `+1 ← S`

E`+1 ← {e ∩ S` | e ∈ E` and |e ∩ S`| > 1}
`← `+ 1

end of while
if V ` 6= ∅, color every v ∈ V ` with color `

Figure 4.1: A hitting set algorithm for conflict-free coloring

which |e∩S`| = 1, because the hitting set S` is minimal. Thus, |E`| > |E`+1|.

Therefore, the number of hyperedges decreases at every iteration of the loop,

and necessarily reaches zero after a finite number of iterations of the loop.

Claim 4.4. The algorithm produces a conflict-free coloring.

Proof. For every hyperedge e ∈ E, there is some ` for which |e∩S`| = 1. Let

v be the one element of e ∩ S`. Vertex v is colored with some color greater

than ` by the algorithm and all other vertices of e are colored with colors

which are at most of value `. Thus, e has the conflict-free property.

4.1.2 A 2-approximation algorithm for a set of inter-

vals

Consider a hypergraph H = (V,E) with V = {1, . . . , n} and every e ∈ E

is a set of consecutive integers. For every i, j with 1 ≤ i ≤ j ≤ n, the set

of consecutive integers {k | k ∈ N and i ≤ k ≤ j} is denoted by [i, j] and
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called an interval. The hypergraphs studied in chapter 2 contain all possible

intervals, in contrast with hypergraphs studied in this section.

We use the algorithm described in the previous section to conflict-free

color hypergraphs induced by a set of intervals. It is necessary to specify

how to compute the minimal hitting set.

The minimal hitting set S is computed as follows.

First, we compute a special independent set of intervals I ⊆ E

(i.e., in I no two intervals have a common vertex). We compute

the independent set of intervals incrementally. Initially, there is

nothing in the independent set. We scan vertices from 1 to n

and we include in the independent set the interval [i, j] ∈ E with

minimum j such that [i, j] does not intersect anything already in

the independent set. After computing I, for every interval [i, j] ∈

I, we take in S the vertex j (i.e., the maximum or rightmost

vertex).

It is not difficult to see that that S is a minimal hitting set (in fact, it is a

minimum cardinality hitting set), as follows. Set S is a hitting set because no

interval is completely contained between two vertices in S, no interval ends

before the first interval in I, and no interval starts after the last interval in

I; otherwise such intervals would be chosen in the independent set I. Set S

is minimal, because removing any element j of it, means that the interval

with right endpoint j in I is not hit any more.
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Remark 4.5. The computation of the maximum independent set of intervals

given above is also known as a solution to the activity selection problem. See

for example Cormen et al. [2001, section 16.1] or Zachos [2006].

We intend to compare colorings produced by the above algorithm with

optimal colorings. We define recursively the following configuration of inter-

vals.

Definition 4.6. Configuration J1 is a single interval. For k > 1, config-

uration Jk consists of two instances of configuration Jk−1 that are disjoint

(i.e., no interval from one instance has a common point with an interval in

the other instance) and of an interval that contains every interval in the two

disjoint Jk−1 instances.

Lemma 4.7. Any conflict-free coloring uses at least k colors for a set of

intervals I that contains an instance of a Jk configuration.

Proof. We use induction on k. For k = 1, the statement is trivially true.

Assume it is true for k, we will prove it for k + 1. Assume, for the sake

of contradiction, that there is a conflict-free coloring with just k colors of

a set of intervals I that contains an instance of a Jk+1 configuration. Set I

contains two independent instances of Jk that each (by the inductive hypoth-

esis) is using all k colors. But then, the interval of the Jk+1 instance that

contains both independent instances of Jk is not conflict-free colored, which

is a contradiction.
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We are now ready to bound the approximation ratio of the proposed

algorithm.

Theorem 4.8. The conflict-free coloring algorithm for hypergraphs induced

by a set of intervals is a 2-approximation algorithm.

Proof. It is enough to prove that if some hyperedge (or interval), say ι,

reaches iteration with ` = k − 1 of the loop (i.e., the algorithm uses at least

k colors), then there is a Jdk/2e configuration in the input and moreover this

configuration is entirely contained in ι.

We prove it by induction. For k = 1, 2, it is true, because there is at least

one interval in the input, and therefore at least one non-zero color is needed

in any optimal coloring. For k > 2, assume there is a vertex v that gets color

k. Then at iteration with ` = k− 1 of the loop there is an interval ι with its

rightmost vertex being v ∈ S` (see figure 4.2).

u w v

ι

ι′1 ι′2

ι′′1 ι′′2

Figure 4.2: Intervals in an input using k colors

Since ι was not removed in the previous iteration ` − 1, there were two

vertices of ι in S`−1, say u and v, with u < v. Also, since u and v are in

S`−1 there are two intervals with them as right endpoints in the independent
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set computed at iteration ` − 1, say ι′1 and ι′2. Since ι′2 was not removed in

the iteration ` − 2, there were two vertices of ι′2 in S`−2, say w and v, with

u < w < v. Also, since u, w, and v are in S`−2 there are three intervals

with them as right endpoints in the independent set computed at iteration

`− 2; call ι′′1 the one ending at w and ι′′2 the one ending at v. Since the three

intervals are independent, ι′′1 and ι′′2 start after u, therefore they are fully

contained in ι (which contains u). By the inductive hypothesis, since each of

ι′′1, ι′′2 reach iteration ` − 2, each of them contains a Jd(k−2)/2e configuration,

and, since ι′′1 and ι′′2 are disjoint, together with ι they constitute a Jdk/2e

configuration.

4.1.3 A tight instance for the 2-approximation algo-

rithm

For k ≥ 2, we intend to define an input Ik that is a tight instance for the

approximation algorithm, i.e., an instance that forces the algorithm to use at

least twice the number of colors in an optimal coloring. Before doing that,

we define some notation that will prove useful.

Definition 4.9. Given a set of intervals I and a natural number d, we define

I+d to be the set of intervals, where all intervals of I are shifted d to the

right, i.e., for every [i, j] ∈ I, there is [i + d, j + d] ∈ I+d, and there are no

other intervals in I+d.

Definition 4.10. Given a set of intervals I, we define the length of I, denoted
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len(I) to be the rightmost point occurring in any of the intervals of I minus

the leftmost point occurring in any of the intervals of I plus one.

Now, we are ready to proceed with the definition of the tight instance.

Definition 4.11. For k = 2 the input I2 has length equal to four and consists

of three intervals.

I2 = {[1, 2], [3, 3], [2, 4]}

For k > 2 the input is defined recursively as follows.

Ik+1 = Ik ∪ I+len(Ik)
k ∪ {[len(Ik)− k + 1, 2len(Ik) + 1]}

Abusing notation, we call the Ik component the left Ik part of Ik+1 and

the I
+len(Ik)
k component the right Ik part of Ik+1. These left and right parts

are disjoint. Inputs I2, I3, I4, I5 are shown in figures 4.3, 4.4, 4.5, 4.6,

respectively. Moreover, in the figures, under the vertices of each input we

give the coloring produced by the 2-approximation algorithm and then an

optimal conflict-free coloring.

0 1 2 0

1 0 1 0

Figure 4.3: Input I2 and conflict-free colorings
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0 1 2 0 0 1 3 0 0
1 0 1 2 1 0 1 0 0

Figure 4.4: Input I3 and conflict-free colorings

0 1 2 0 0 1 3 0 0 0 1 2 0 0 1 4 0 0 0
1 0 1 2 1 0 1 0 0 1 0 1 2 1 0 1 0 0 0

Figure 4.5: Input I4 and conflict-free colorings

0 1 2 0 0 1 3 0 0 0 1 2 0 0 1 4 0 0 0 0 1 2 0 0 1 3 0 0 0 1 2 0 0 1 5 0 0 0 0

1 0 1 2 1 0 1 0 0 1 0 1 2 1 0 1 0 0 3 1 0 1 2 1 0 1 0 0 1 0 1 2 1 0 1 0 0 0 0

Figure 4.6: Input I5 and conflict-free colorings
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It is not difficult to see that the length of the instance satisfies the recur-

rence relation

len(Ik+1) = 2len(Ik) + 1 (4.1)

which implies, since len(I2) = 4, that

len(Ik) = 5 · 2k−2 − 1

Another notion that will prove useful is the level of each interval in the

above instance that we define in the following.

Definition 4.12. In input I2, intervals [1, 2] and [3, 3] are of level 1 and

interval [2, 4] is of level 2. In the recursively defined instance

Ik+1 = Ik ∪ I+len(Ik)
k ∪ {[len(Ik)− k + 1, 2len(Ik) + 1]}

the intervals of the Ik part have the same levels as the corresponding intervals

in the Ik instance, the intervals of the I
+len(Ik)
k part have the same levels as

the corresponding intervals of the Ik instance before the ‘+len(Ik)’ operation,

and interval [len(Ik)− k + 1, 2len(Ik) + 1] has level k + 1.

In fact, in figures 4.3, 4.4, 4.5, and 4.6 the vertical coordinate of each

interval signifies its level, with higher intervals having higher level.

Lemma 4.13. For k ≥ 3, in Ik, the leftmost point of the level k interval is

the same as the rightmost level 1 interval in the left Ik−1 part of Ik.
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Proof. We prove by induction that the rightmost level 1 interval of the left

Ik−1 part of Ik is at position len(Ik−1) − (k − 1) + 1. For I3, the rightmost

level 1 interval of the left I2 part of I3 consists of point 4− (3− 1) + 1 = 3.

By the inductive hypothesis, the rightmost level 1 interval of the left Ik−1

part of Ik is at len(Ik−1)− (k − 1) + 1. Then for Ik+1, the rightmost level 1

interval of its left Ik part is at

len(Ik−1)− (k−1)+1+len(Ik−1) = (2len(Ik−1)+1)+k−1 = len(Ik)+k−1.

The last equality is implied by equation (4.1).

Lemma 4.14. Instance Ik contains a Jdk/2e configuration.

Proof. By induction. It is true for k = 2 and k = 3, because I2 contains

a J1 configuration and I3 contains a J2 configuration. For k > 3, in in-

stance Ik, the interval of level k contains completely a copy of Ik−1, in which

two disjoint copies of Ik−2 are contained. By the inductive hypothesis, in

each copy of Ik−2, a Jd(k−2)/2e configuration is contained. These two disjoint

Jd(k−2)/2e configurations, together with the level k interval constitute a Jdk/2e

configuration in Ik.

Lemma 4.15. There is a conflict-free coloring of Ik with dk/2e colors.

Proof. We define recursively a coloring of Ik that uses dk/2e colors and we

prove by induction that it is conflict-free.

For k = 2 the coloring is 1010, which can be easily checked to be conflict-

free.
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If k is odd, take a coloring of Ik−1 and in its rightmost position use

color dk/2e, concatenate a coloring of Ik−1, and then concatenate color ‘0’.

By induction, the left Ik−1 part is conflict-free because we started with a

conflict-free coloring and we introduced a new color dk/2e, the right Ik−1

part is conflict-free because it is colored with a conflict-free coloring. The

level k interval is conflict-free because of color dk/2e that occurs uniquely.

If k is even, with k > 2, take a coloring of Ik−1, concatenate a coloring

of Ik−1, and then concatenate color ‘0’. By induction, the left Ik−1 part is

conflict-free because it is colored with a conflict-free coloring, the right Ik−1

part is conflict-free because it is colored with a conflict-free coloring. The

level k interval is conflict-free because of color dk/2e that occurs in the right

Ik−1 part and because its leftmost point, by lemma 4.13, is to the right of

the dk/2e color occurring in the left Ik−2 part of the left Ik−1 part.

Corollary 4.16. An optimal coloring of Ik uses dk/2e colors.

We now describe a family of hypergraphs that arise after the first iteration

of the while loop of the 2-approximation algorithm, if the initial input is Ik.

Definition 4.17. The instance L0 is on one vertex, namely the vertex set

is {1}, and contains no interval, i.e, L0 = {}. The length of instance L0 is

defined to be 1. For k > 0, Lk+1 is defined recursively.

Lk+1 = Lk ∪ L+len(Lk)
k ∪ {[len(Lk), 2len(Lk)]}

It is not difficult to see that the length satisfies the recurrence relation



panagiotis cheilaris conflict-free coloring 109

len(Lk+1) = 2len(Lk), which implies len(Lk) = 2k. We say that Lk+1 consists

of a left Lk part, a right Lk part, and the interval [2k, 2k+1].

Proposition 4.18. The 2-approximation algorithm colors Ik with k colors.

Proof. Assume input Ik is given to the 2-approximation algorithm. In the

iteration of the while loop where the algorithm colors points with color `

(` = 0, 1, . . . ), the algorithm considers a hypergraph H`. We will prove that

the algorithm considers the hypergraphs

H0 = Ik, H1 = Lk−1, . . . , Hk−1 = L1, Hk = L0,

and then it terminates, i.e., it uses k colors. We say that Hi is followed by

Hi+1, to show that two hypergraphs Hi, Hi+1 are considered successively by

the algorithm, in that order.

First, we prove that for every k ≥ 2, Ik is followed by Lk−1, by induction

on k. It is not difficult to see that, when Ik is considered, the independent

set of intervals chosen consists of all level 1 intervals of Ik and the hitting

set that is chosen consists of the right endpoints of all level 1 intervals of Ik

(a formal proof can be carried out by induction on k). For k = 2 it is not

difficult to check that I2 is followed by L1. For k > 2, Ik consists of a left Ik−1

part which induces a left Lk−2 part and a right Ik part, which induces a right

Lk−2 part (we use the inductive hypothesis). From lemma 4.13, the leftmost

point of the level k interval is the same as the rightmost level 1 interval in

the left Ik−1 part of Ik, and therefore the level k interval induces an interval
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that starts from the last point of the left Lk−2 part of the hypergraph that

follows Ik and ends at the last point of the right Lk−2 part of the hypergraph

that follows Ik. To summarize, the Ik is followed by a left Lk−2 part, a right

Lk−2 part and interval [2k−2, 2k−1], i.e., it is Lk−1.

Then, we prove that for k > 0, Lk is followed by Lk−1, by induction on

k. For k = 1, it is not difficult to see that for L1 the interval [1, 2] is chosen

and its right endpoint, i.e., 2, makes up the hitting set. Then, easily, L1 is

followed by L0. For k > 1, when Lk is considered, the independent set of

intervals that is chosen consists of the intervals of length two of the left Lk−1

part

{[1, 2], [3, 4], . . . , [2k−1 − 1, 2k−1]}

and the intervals of length two of the right Lk−1 part

{[2k−1 + 1, 2k−1 + 2], [2k−1 + 3, 2k−1 + 4], . . . , [2k − 1, 2k]}.

Therefore the hitting set is

{2, 4, . . . 2k−1} ∪ {2k−1 + 2, 2k−1 + 4, . . . , 2k} = {i : odd | 2 ≤ i ≤ 2k}

and consists of 2k−1 elements. By induction, after removal of the points of

the hitting set, the left Lk−1 part induces a Lk−2 part, and the right Lk−1

part induces a Lk−2 part. The interval [2k−1, 2k] of Lk contains all points

in {2k−1 + 2, 2k−1 + 4, . . . , 2k} of the right Lk−1 part and just point 2k−1 of
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the left Lk−1 part, and therefore induces [2k−2, 2k−1] in the hypergraph that

follows Lk. To summarize, the Lk is followed by a left Lk−2 part, a right Lk−2

part and interval [2k−2, 2k−1], i.e., it is Lk−1.

Finally, we prove that when L0 is reached, no hypergraph follows, and

the algorithm terminates. This is true, because L0 contains no interval (hy-

peredge).

Remark 4.19. From the above proof of proposition 4.18, it is immediate that

if Lk is given as an input to the 2-approximation algorithm, the following

sequence of hypergraphs

H0 = Lk, H1 = Lk−1, . . . , Hk−1 = L1, Hk = L0

is considered in the iterations of the while loop. Moreover, it can also be

proven, with a proof similar to those of lemmata 4.14 and 4.15, that an

optimal coloring for Lk uses dk/2e colors. Therefore, the family of instances

Lk is also a family of tight instances for the 2-approximation algorithm.

However, the family of instances Ik has the additional property that no two

intervals in it share a common right endpoint.

4.2 Conflict-free coloring for paths

A conflict-free coloring of n points with respect to intervals can be seen as a

conflict-free coloring of the vertices of the path graph Pn with respect to all
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paths in the graph. We generalize to arbitrary graphs.

Definition 4.20. A conflict-free coloring of graph G is a function C : V →

N+ such that in every path of G there is a vertex with a uniquely occurring

color in the path. The minimum k for which there is a conflict-free coloring

of graph G is called the conflict-free chromatic number of G, denoted by

χpath
cf (G), or simply χcf(G) (when there is no danger of confusion with the

same notation for conflict-free coloring arbitrary hypergraphs).

As we have mentioned, an ordered coloring of a graph is a unique max-

imum conflict-free coloring of a graph; see definition 1.15 on page 15. We

show a simple relation between the conflict-free chromatic number, the or-

dered chromatic number, and the traditional chromatic number of a graph.

Proposition 4.21. For every graph G, χ(G) ≤ χcf(G) ≤ χo(G).

Proof. Since every ordered coloring is a also a conflict-free coloring, we have

χcf(G) ≤ χo(G). A traditional coloring can be defined as a coloring in which

paths of length one are conflict-free. Therefore every conflict-free coloring is

also a traditional coloring and thus χ(G) ≤ χcf(G).

Moreover, we prove that both conflict-free and ordered chromatic num-

bers are monotone under taking subgraphs.

Proposition 4.22. If X ⊆ Y , then χcf(X) ≤ χcf(Y ) and χo(X) ≤ χo(Y ).

Proof. Take the restriction of any conflict-free or ordered coloring of graph

Y to the vertex set V (X). This is a conflict-free or ordered coloring of graph

X because the set of paths of graph X is a subset of all paths of Y .
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We now define a family of graphs where the two numbers, χo(G) and

χcf(G), differ by one.

Definition 4.23. The hedgehog graph Hk consists of a complete graph Kk,

a null graph Kk, and a matching of k edges, where each vertex of Kk is

matched with a different vertex of Kk.

In figure 4.7, we show some small hedgehog graphs.

Figure 4.7: Hedgehog graphs for k = 3, 4, 5

Lemma 4.24. For all k ≥ 3, χcf(Hk) ≥ k.

Proof. Since Kk ⊆ Hk, we have χcf(Hk) ≥ χcf(Kk) ≥ χ(Kk) = k, by propo-

sitions 4.21 and 4.22.

Lemma 4.25. For all k ≥ 3, χcf(Hk) ≤ k.

Proof. We exhibit, for k ≥ 3, a conflict-free coloring of Hk with k colors.

First we show how to color vertices in the Kk part and then in the Kk part.

Color the k vertices of the Kk part with k different colors from {1, . . . , k}.

For every vertex v in the Kk part, if its neighbor in the Kk part is colored



panagiotis cheilaris conflict-free coloring 114

with color c, then color v with (c+ 1) mod1 k, where ‘mod1’ is a variation of

the modulo binary operator that returns k instead of 0. Now, we check that

the above coloring is indeed conflict-free. Every trivial path, i.e., a path of

one vertex, always has the conflict-free property, so we consider only paths of

length at least one in what follows. Every path contained in the Kk part has

the conflict-free property, because no two vertices in the Kk part share the

same color. Every non-trivial path that contains exactly one vertex v of the

Kk part has the conflict-free property because the color of the neighbor of v

in the Kk part is unique in the path. What remains is to consider paths in

which the initial and the last vertex in the path are in part Kk. In that case,

the remaining vertices of the path are in Kk because there is no (simple) path

in the graph that contains more than two vertices of Kk and the degree of

vertices in Kk is one. Assume such a path looks like vu . . . u′v′, where v and

v′ are in the Kk part, and u and u′ are in the Kk part (see figure 4.8). Assume

Kk

. . .

v
u

v′

u′
(c+ 1) mod1 k c

c

(c− 1) mod1 k

Figure 4.8: A path with two vertices of degree one, v and v′

C(u) = c. If c is not a unique color in the path, it has to be the case that

C(v′) = C(u) = c (see figure 4.8), but in that case C(u′) = (c − 1) mod1 k,
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which is a unique color in the path, because it is different from all other

colors in the path, even C(v) = (c+ 1) mod1 k (because k ≥ 3).

Lemma 4.26. For all k ≥ 3, χo(Hk) > k.

Proof. Assume for the sake of contradiction that there is an ordered coloring

C of Hk with colors in the set {1, . . . , k}. It is not possible for a color to be

shared by two vertices of the Kk part (because there is an edge between any

two such vertices). Therefore, all colors are used in the Kk part, a different

one for every vertex in Kk. Consider the vertex u of Kk with C(u) = 1. Its

neighbor v in the Kk part has a different color C(v) = c > 1. But there is also

a neighbor of u, call it u′, in the Kk part, with C(u′) = c. But then the path

vuu′ does not have the unique maximum property, because the maximum

color occurring in it, namely c > 1, is not unique. Therefore, we have a

contradiction to C being an ordered coloring of Hk.

Lemma 4.27. For all k ≥ 3, χo(Hk) ≤ k + 1.

Proof. We exhibit, for k ≥ 3, an ordered coloring of Hk with k + 1 colors.

Color all vertices in the Kk part with the same color 1. Color each vertex

in the Kk part with a different color from the set {2, . . . , k + 1}. Every non-

trivial path contains at least a vertex of the Kk part. Since the colors of the

Kk part are unique in the whole graph and greater than the color 1, every

path has the unique maximum property.

Therefore, by combining lemmata 4.24, 4.25, 4.26, and 4.27, we have the

following.
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Corollary 4.28. For k ≥ 3, χcf(Hk) = k and χo(Hk) = k + 1.

4.3 Conflict-free coloring for neighborhoods

In this section, we consider conflict-free coloring hypergraphs induced by

neighborhoods of vertices in a graph. We give formal definitions in the fol-

lowing.

Definition 4.29. The open neighborhood of a vertex v in graph G is the

set of vertices adjacent to v in G and is denoted by ΓG(v) (or just Γ (v) if

the graph G is clear from context) The closed neighborhood of a vertex v in

graph G is the open neighborhood together with the vertex v and is denoted

by Γ̄G(v) (or just Γ̄ (v) if the graph G is clear from context).

We remark that for a simple graph, we have v /∈ Γ (v), but v ∈ Γ̄ (v).

Definition 4.30. A function C : V (G) → {1, . . . , k} is a conflict-free k-

coloring with respect to open neighborhoods of G if for every v ∈ V (G) there

is a vertex with unique color in Γ (v). The open neighborhood conflict-free

chromatic number of G is denoted by χon
cf (G) and is the smallest number k

such that G has a conflict-free k-coloring with respect to open neighborhoods.

Definition 4.31. A function C : V (G) → {1, . . . , k} is a conflict-free k-

coloring with respect to closed neighborhoods of G if for every v ∈ V (G) there

is a vertex with unique color in Γ̄ (v). The closed neighborhood conflict-free

chromatic number of G is denoted by χcn
cf (G) and is the smallest number k
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such that G has a conflict-free k-coloring with respect to closed neighbor-

hoods.

Definition 4.32. A function C : V (G) → {1, . . . , k} is a unique maximum

k-coloring with respect to open neighborhoods of G if for every v ∈ V (G)

the largest color occurring in Γ (v) is a unique color in Γ (v). The open

neighborhood unique maximum chromatic number of G is denoted by χon
um(G)

and is the smallest number k such that G has a unique maximum k-coloring

with respect to open neighborhoods.

Definition 4.33. A function C : V (G) → {1, . . . , k} is a unique maximum

k-coloring with respect to closed neighborhoods of G if for every v ∈ V (G)

the largest color occurring in Γ̄ (v) is a unique color in Γ̄ (v). The closed

neighborhood unique maximum chromatic number of G is denoted by χcn
um(G)

and is the smallest number k such that G has a unique maximum k-coloring

with respect to closed neighborhoods.

Every unique maximum coloring is a conflict-free coloring and therefore

χon
cf (G) ≤ χon

um(G) and χcn
cf (G) ≤ χcn

um(G).

4.3.1 Upper bounds on closed neighborhoods conflict

free colorings

Proposition 4.34. For every graph G, χcn
cf (G) ≤ χ(G).

Proof. A traditional vertex coloring is a closed neighborhood conflict-free
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coloring, because in every Γ̄ (v), vertex v has a unique color among its neigh-

bors.

The degree of a vertex v in a graph is the cardinality of its open neigh-

borhood Γ (v). We denote by ∆(G) the maximum degree of a vertex in graph

G.

We can prove a result analogous to Brooks’ theorem for the closed neigh-

borhood conflict-free chromatic number. The theorem of Brooks [1941] states

that χ(G) ≤ ∆(G), unless the graph is complete or an odd cycle.

Proposition 4.35. For every graph G, except K1 and K2, χcn
cf (G) ≤ ∆(G).

For K1, χcn
cf (K1) = ∆(K1) + 1 = 1; for K2, χcn

cf (K2) = ∆(K2) + 1 = 2.

Proof. By proposition 4.34 and Brooks’ theorem we have χcn
cf (G) ≤ ∆(G),

except possibly for complete graphs and odd cycles. However, from propo-

sition 4.49, for n ≥ 2, χcn
cf (Kn) = 2, and from proposition 4.47, for n ≥ 3,

χcn
cf (Cn) = 2.

A dominating set D in graph G is a subset of V (G) such that every vertex

in V (G)−D has a neighbor in D. The cardinality of the smallest dominating

set in G is denoted by γ(G).

Proposition 4.36. For every graph G, χcn
cf (G) ≤ χcn

um(G) ≤ γ(G) + 1.

Proof. Color vertices in a smallest size dominating set D with colors 2 to

γ(G) + 1. Color vertices in V (G)−D with color 1.

Proposition 4.37. For every graph G, χcn
cf (G) ≤ 2

√
n.
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Proof. Use the following coloring algorithm: Repeatedly remove the vertex

v in the graph that dominates most other vertices that have not yet been

dominated. Color v with a unique color and vertices in Γ (v) with a dummy

color (say color 1). Repeat until no vertex that dominates
√
n or more

vertices remains, and color the remaining graph (the uncolored vertices) with

a traditional coloring, greedily, using a new set of colors. The first coloring

process can not go on for more than
√
n steps because for every step, where

v is chosen, at least
√
n new vertices are colored with color 1. The second

coloring process uses at most
√
n colors, because the remaining graph has

maximum degree less than
√
n. Therefore, χcn

cf (G) <
√
n + 1 +

√
n, or

equivalently χcn
cf (G) ≤ 2

√
n.

Remark 4.38. Recently, with the help of a randomized coloring and an anal-

ysis based on the Lovász local lemma, Pach and Tardos [2008] improved on

the above result and showed that the closed neighborhood conflict-free chro-

matic number is bounded by O(log2+ε n), for every ε > 0. They also proved

a lower bound of Ω(log n) on χcn
cf , which holds almost surely for the random

graph on n vertices with edge probability 1/2.

4.3.2 Upper bounds on open neighborhood colorings

In order to upper bound the open neighborhood conflict-free chromatic num-

bers, we use the notion of total dominating set which is related to the notion

of dominating set. A total dominating set D in graph G is a subset of V (G)
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such that every vertex in V (G) has a neighbor in D. Observe that a graph

which has at least one isolated vertex has no total dominating set. In the

following we only consider graphs with no isolated vertices. The cardinality

of the smallest total dominating set in G is denoted by γt(G).

Proposition 4.39. For every graph G, χon
cf (G) ≤ χon

um(G) ≤ γt(G) + 1.

Proof. Color vertices in a smallest size total dominating set D with colors 2

to γt(G) + 1. Color vertices in V (G)−D with color 1.

We also prove a bound similar to the one given in proposition 4.37. The

proof is also similar, with some slight adjustments.

Proposition 4.40. For every graph G, χon
cf (G) ≤ 2

√
n.

Proof. Use the following coloring algorithm.

In the first phase, as long as there is a vertex v in at least
√
n neighbor-

hoods, color it with a unique color and remove v along with all neighborhoods

to which it belongs. This coloring process can not go on for more than
√
n

steps because in every round at least
√
n new open neighborhoods are re-

moved and the graph has exactly n open neighborhoods.

We now proceed to the second phase of the algorithm, in what remains

in the graph. Each remaining vertex is in fewer than
√
n remaining open

neighborhoods. From now on we use a new set of at most
√
n colors. We

consider an arbitrary order of the remaining vertices. We consider vertices

one by one in this order. We intend to color the vertices so that for each
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remaining open neighborhood X, the first vertex of X in the order has a

uniquely occurring color in X. For each vertex v in the order, we define

the set Sv of vertices containing already colored vertices (i.e., vertices before

v in the order) which have the additional two properties: (a) they share

some hyperedge with v and (b) they were the first vertex colored in some

hyperedge. The algorithm colors v with the smallest color that does not

occur in any vertex of Sv. This coloring process uses at most
√
n colors,

because each vertex is in less than
√
n remaining open neighborhoods, and

therefore |Sv| <
√
n.

We argue that the coloring is conflict-free. Open neighborhoods that are

removed in the first phase of the algorithm have the conflict-free property

because each of the colors used in the first phase is unique. Every open

neighborhood X that is considered in the second phase has the conflict-free

property because of the color c of the first vertex v that is considered for

coloring in X. In fact, every other vertex that is subsequently colored in X

is going to have a color different from c.

The first coloring process uses at most
√
n colors. The second coloring

process uses at most
√
n colors. Therefore, χon

cf (G) ≤ 2
√
n.

Remark 4.41. The coloring algorithm described in the proof of proposi-

tion 4.40 can be used with slight adaptations to conflict-free color also with

respect to closed neighborhoods. However, we still prefer to also give the more

direct algorithm for conflict-free coloring closed neighborhoods of graphs in

the proof of proposition 4.37, because we think it is simpler and more intu-
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itive. Moreover, as shown by Pach and Tardos [2008], the aforementioned

algorithm can be used to conflict-free color every hypergraph having at most

m hyperedges with at most 2
√
m colors. A more careful switch from the first

to the second phase in the algorithm, also due to Pach and Tardos [2008],

can even give an asymptotic upper bound of
√

2
√
m colors, which is tight

(see proposition 4.43).

4.3.3 A lower bound for open neighborhood conflict-

free colorings

We have seen in the previous section that for a graph G with n vertices,

χon
cf (G) = O(

√
n). We will prove that the above result is tight in the sense

that there is a family of graphs with n vertices and χon
cf (G) = Ω(

√
n).

Definition 4.42. For k ≥ 2, define the bipartite graph Bk as follows. Con-

sider the set of elements Xk = {1, . . . , k} and the set Sk of subsets of car-

dinality two of Xk. The vertex set of the bipartite graph Bk consists of the

two parts Xk and Sk and there is an edge between x ∈ Xk and y ∈ Sk if and

only if x ∈ y. The graph has n = k + k(k − 1)/2 = k(k + 1)/2 vertices.

Since n = k(k + 1)/2, we have k ≈
√

2
√
n, and in order to show the

aforementioned lower bound it is enough to prove the following proposition.

Proposition 4.43. For k ≥ 2, χon
cf (Bk) ≥ k.

Proof. Assume there is an open-neighborhood conflict-free coloring of Bk

with fewer than k colors. Then, by the principle of forced coincidence (pi-
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geonhole principle), two vertices, say u and v in Xk have the same color. But

this implies that the vertex corresponding to set {u, v} in Sk does not have

a conflict-free colored open neighborhood.

4.3.4 Some (almost) optimal colorings

In this section, we exhibit optimal or almost optimal conflict-free colorings

with respect to neighborhoods for some families of graphs.

Paths

Proposition 4.44. For n > 2,

χon
cf (Pn) = χon

um(Pn) = χcn
cf (Pn) = χcn

um(Pn) = 2.

Any substring of the infinite string (1122)∞ is a legal conflict-free or

unique maximum coloring with respect to open neighborhoods.

For closed neighborhoods, the only unique maximum colorings are

• (121)k−112 (and its reversal; one leaf of the path is colored with 1 and

the other with 2) for P3k−1,

• (121)k for P3k, and

• (211)k2 for P3k+1.
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Remark 4.45. The above conflict-free colorings with respect to closed neigh-

borhoods are special substrings of the periodic infinite string

. . . 121121121 . . .

Cycles

Proposition 4.46. If 4|n, χon
cf (Cn) = χon

um(Cn) = 2, otherwise χon
cf (Cn) =

χon
um(Cn) = 3.

We exhibit optimal unique maximum open neighborhoods colorings:

• for C4k, (1122)k,

• for C4k+1, (1122)k3,

• for C4k+2, (1122)k33,

• for C4k+3, (1122)k133.

Proposition 4.47. For n ≥ 3, χcn
cf (Cn) = 2.

We exhibit optimal conflict-free colorings with respect to closed neigh-

borhoods:

• for C3k, (112)k,

• for C3k+1, (112)k2,

• for C3k+2, (112)k12.
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Proposition 4.48. If 3|n, χcn
um(Cn) = 2, otherwise χcn

um(Cn) = 3.

We exhibit optimal unique maximum closed neighborhoods colorings:

• for C3k, (112)k,

• for C3k+1, (112)k3,

• for C3k+2, (112)k13.

Grids

The product of graphs X and Y , denoted by X×Y , is the graph with vertex

set V (X ×Y ) = V (X)×V (Y ) and vertices (x, y) and (x′, y′) are adjacent in

E(X × Y ) if and only if:

(x = x′ and {y, y′} ∈ E(Y )) or ({x, x′} ∈ E(X) and y = y′).

The grid Gr×c is the graph product of two paths, Pr × Pc. The standard

drawing of the grid Gr×c, is one where its vertices are put in r rows and c

columns. For example, see figure 4.9 for the 4× 5 grid graph.

Figure 4.9: A standard drawing of the 4× 5 grid
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Grids are bipartite graphs, and therefore χcn
cf (Gr×c) ≤ χ(Gr×c) ≤ 2. For

grids, we can show that three colors are enough in all cases, by exhibiting

unique maximum colorings with respect to neighborhoods with the afore-

mentioned number of colors.

For open neighborhood unique maximum coloring, we are going to use

for each row of Gr×c one of the following two colorings:

t = prefix of length c of (2233)∞ and o = 1c.

If r ≡ 0 (mod 3), then color rows as (oto)r/3. If r ≡ 1 (mod 3), then color

rows as (too)br/3ct. If r ≡ 2 (mod 3), then color rows as (too)br/3cto. An open

neighborhood unique maximum coloring of G4×5, where the toot pattern is

used, is shown in figure 4.10.

2 2 3 3 2

1 1 1 1 1

1 1 1 1 1

2 2 3 3 2

Figure 4.10: An open neighborhood unique maximum coloring of the 4 × 5
grid

For closed neighborhood unique maximum coloring, depending on the

value of c, we use for vertices in each row of Gr×c one of the following two



panagiotis cheilaris conflict-free coloring 127

colorings:

t =


(232)c/3, if c ≡ 0 (mod 3)

(322)bc/3c3, if c ≡ 1 (mod 3)

(322)bc/3c32, if c ≡ 2 (mod 3)

and o = 1c.

If r ≡ 0 (mod 3), then color rows as (oto)r/3. If r ≡ 1 (mod 3), then color

rows as (too)br/3ct. If r ≡ 2 (mod 3), then color rows as (too)br/3cto. A closed

neighborhood unique maximum coloring of G4×5, where the toot pattern is

used, is shown in figure 4.11.

3 2 2 3 2

1 1 1 1 1

1 1 1 1 1

3 2 2 3 2

Figure 4.11: A closed neighborhood unique maximum coloring of the 4 × 5
grid

Complete graphs

Proposition 4.49. For n ≥ 2, χcn
cf (Kn) = χcn

um(Kn) = 2.

For an optimal unique maximum neighborhood coloring, color a vertex v

with color 2 and every other vertex with color 1.

Proposition 4.50. For n ≥ 3, χon
cf (Kn) = χon

um(Kn) = 2.
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For an optimal unique maximum neighborhood coloring, color two ver-

tices with colors 2 and 3 and every other vertex with color 1. However,

χon
cf (K2) = χon

um(K2) = 1.

Complete multipartite graphs

For multipartite graphs, three colors are enough as exhibited by a coloring

based on a dominating set or total dominating set: With two vertices, each

in different parts of the graph, you can totally dominate every vertex.

4.4 Ramsey-type results for conflict-free col-

oring

In this section, we study a Ramsey-type problem related to conflict-free col-

oring.

4.4.1 Conflict-free van der Waerden numbers

An r-coloring of {1, . . . , n} is a function C : {1, . . . , n} → {1, . . . , r}. We

consider properties of arithmetic progressions of length k of {1, . . . , n}, that

are induced by a coloring of {1, . . . , n}. To avoid degenerate cases, we assume

the length k is strictly greater than 1. We say that an arithmetic progression

is monochromatic if all its elements have the same color. We say that an

arithmetic progression is conflict-free if there is an element of it with a unique
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color in the arithmetic progression. We say that an arithmetic progression is

unique-max if the maximum color occurring in the arithmetic progression is

unique in the arithmetic progression. Colorings of the first n positive integers

can also be viewed as strings over an alphabet of r symbols.

The classic van der Waerden numbers are defined as follows.

Definition 4.51. W (r, k) is the smallest number n such that any r-coloring

of {1, . . . , n} necessarily has an arithmetic progression of length k which is

monochromatic.

The only exactly known non-trivial classic van der Waerden numbers are

shown in table 4.1, from Landman and Robertson [2004], Kouril and Paul

[2008].

r \ k 3 4 5 6

2 9 35 178 1132
3 27
4 76

Table 4.1: Classic van der Waerden numbers

We consider variations of the van der Waerden numbers as follows.

Definition 4.52. Wcf(r, k) is the smallest number n such that any r-coloring

of {1, . . . , n} necessarily has an arithmetic progression of length k which is

non-conflict-free.

Definition 4.53. Wum(r, k) is the smallest number n such that any r-coloring

of {1, . . . , n} necessarily has an arithmetic progression of length k which is

non-unique-max.
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Observe that W (r, 2) = Wcf(r, 2) = Wum(r, 2) = r + 1.

Definition 4.54. We denote the minimum prime factor of k by pmin(k).

We are now ready to prove the main result of this section.

Proposition 4.55. For every k, Wum(2, k) = (k − 1)pmin(k) + 1.

Proof. First, we prove that for n = (k− 1)pmin(k), the following coloring has

the property that every arithmetic progression of length k is unique max:

C(i) =


2, if i = λk, where λ ∈ {1, . . . , pmin(k)− 1}

1, otherwise

In fact any coloring which is a substring of length n = (k − 1)pmin(k) of the

infinite string

σ = 11 . . . 12︸ ︷︷ ︸
k

11 . . . 12︸ ︷︷ ︸
k

. . .

is a legal coloring. Moreover, these are the only possible legal colorings,

because if a coloring is legal for the step 1 arithmetic progressions, it has

to be the case that exactly one of every k consecutive numbers is colored

with 2, and also that any two consecutive occurrences of color ‘2’ in the

coloring are exactly at distance k (i.e, have k− 1 1’s between). However, for

simplicity, we will argue about the specific coloring C given above. It is easy

to see that for n = (k − 1)pmin(k), only arithmetic progressions with steps

s ∈ {1, . . . , pmin(k) − 1} are defined. We will prove that every arithmetic
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progression of step s:

A = {a, a+ s, . . . , a+ is, . . . , a+ (k − 1)s}

contains exactly one number colored with color 2.

For the sake of contradiction, assume A contains at least two occurrences

of color 2, for indices i1 and i2, i.e., elements a+ i1s and a+ i2s are colored

with color 2. Therefore, λ1k = a + i1s and λ2k = a + i2s for some λ1, λ2

in {1, . . . , pmin(k) − 1}. By combining the previous two equations, we get

(λ2−λ1)k = (i2− i1)s, which is impossible because s < pmin(k) and therefore

(i2 − i1) must be divisible by k, but this is impossible because i2 − i1 < k.

For the sake of contradiction, assume A contains no occurrence of color 2.

Then for every i ∈ {0, . . . , k−1}, element a+ is 6≡ 0 (mod k). Therefore, by

the pigeonhole principle, there are two indices i1 and i2, such that elements

a + i1s and a + i2s are congruent modulo k, i.e., a + i1s = λ1k + b and

a+ i2s = λ2k + b for some integers λ1, λ2. By combining the two equations,

we get (λ2 − λ1)k = (i2 − i1)s, which is a contradiction as above.

Then, we prove that any 2-coloring for n′ = (k − 1)pmin(k) + 1 contains

an arithmetic progression of length k which is not unique max. Assume for

the sake of contradiction that there is a legal coloring. As before, it has to be

the case that the coloring is a substring of σ, because of the step 1 arithmetic

progressions. Therefore, occurrences of color 2 are at distance k. Consider
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the step pmin(k) length k arithmetic progression:

X = {1, 1 + pmin(k), . . . , 1 + ipmin(k), . . . , 1 + (k − 1)pmin(k)}

For X to be unique max, there must be an i ∈ {0, . . . , k − 1} for which

element 1 + ipmin(k) of X is colored with color 2. For X to be unique max,

it has to also be the case that no other element of X is at distance k from

1 + ipmin(k). Therefore, it must be the case that:

not (i− k/pmin(k) ≥ 0 or i+ k/pmin(k) ≤ k − 1)

or equivalently:

i− k/pmin(k) ≤ −1 and i+ k/pmin(k) ≥ k

By combining the above inequalities, we get 2k/pmin(k) ≥ (k + 1) which is

false because pmin(k) ≥ 2.

4.5 Discussion and open problems

In this chapter, we collected several results on conflict-free coloring. We con-

sidered a variation of conflict-free coloring where only a given subset of inter-

vals are required to have the conflict-free property and provided a polynomial

time 2-approximation algorithm, improving on a 4-approximation algorithm
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by Katz et al. [2007]. It still remains open whether the problem of computing

an optimal coloring in this setting is NP-hard.

Then we studied vertex conflict-free colorings of graphs with respect to all

paths in graphs. A closely related vertex graph coloring is ordered coloring.

We constructed graphs for which the two chromatic numbers, conflict-free

chromatic number χcf(G) and ordered chromatic number χo(G), are different.

It would be interesting to characterize the graphs for which the two numbers

are the same. It would also be interesting to prove an upper bound on the

difference of the two chromatic numbers, χcf(G) and χo(G). Another open

problem is determining the computational complexity of computing χcf(G).

We also considered vertex conflict-free colorings of graphs with respect

to neighborhoods of the graph. Our main result was that for a graph with

n vertices 2
√
n colors are enough to conflict-free color with respect to neigh-

borhoods. We proved that the aforementioned result is order tight for closed

neighborhoods. For open neighborhoods, Pach and Tardos [2008] provide an

improved upper bound of O(log2+ε n) and a lower bound of Ω(log n); it re-

mains an interesting open problem to close this gap. Another open problem

is the computational complexity of computing optimal conflict-free colorings

with respect to neighborhoods. We conjecture that it is NP-complete.

Finally, we initiated the study of Ramsey-type results for conflict-free

coloring, by considering conflict-free colorings of {1, . . . , n} with respect to

arithmetic progressions of length k. In the traditional Ramsey theory set-

ting this problem is related to van der Waerden numbers. We computed
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exactly the unique maximum van der Waerden numbers for two colors. We

believe that it would be interesting to compute such numbers (i.e., where

conflicts start occurring) for several kinds of problems, because they will be

smaller than their monochromatic Ramsey-type number counterparts, and

they might be easier to compute.
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Iztok Peterin. Nonrepetitive colorings of trees. Discrete Mathematics, 307:
163–172, 2007.



panagiotis cheilaris conflict-free coloring 137

Brooks, R. L. On colouring the nodes of a network. Proceedings of the
Cambridge Philosophical Society, 37:194–197, 1941.

Chan, Joseph, Francis Chin, Xiangyu Hong, and Hingfung Ting. Dynamic
offline conflict-free coloring for unit disks. In Proceedings of the 6th Work-
shop on Approximation and Online Algorithms (WAOA), 2008.

Cheilaris, Panagiotis. Algorithms and Complexity: graph and hypergraph
colorings. Thesis, National Technical University of Athens, 2006.

Cheilaris, Panagiotis, Ernst Specker, and Stathis Zachos. Neochromatica.
Submitted, 2006.

Chen, Ke. How to play a coloring game against a color-blind adversary.
In Proceedings of the 22nd Annual ACM Symposium on Computational
Geometry (SoCG), pages 44–51, 2006.

Chen, Ke, Haim Kaplan, and Micha Sharir. Online conflict free coloring
for halfplanes, congruent disks, and axis-parallel rectangles. Manuscript,
2006.

Chen, Ke, Amos Fiat, Haim Kaplan, Meital Levy, Jǐŕı Matoušek, Elchanan
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Gyárfás, András and Jenö Lehel. On-line and first fit coloring of graphs.
Journal of Graph Theory, 12(2):217–227, 1988.

Har-Peled, Sariel and Shakhar Smorodinsky. Conflict-free coloring of points
and simple regions in the plane. Discrete and Computational Geometry,
34:47–70, 2005.



panagiotis cheilaris conflict-free coloring 139
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