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Abstract

(i) We provide a framework for online conflict-free
coloring (CF-coloring) any hypergraph. We use this
framework to obtain an efficient randomized online
algorithm for CF-coloring any k-degenerate hyper-
graph. Our algorithm uses O(k log n) colors with
high probability and this bound is asymptotically op-
timal for any constant k. Moreover, our algorithm
uses O(k log k log n) random bits with high probabil-
ity. We obtain asymptotically optimal randomized
algorithms for online CF-coloring some hypergraphs
that arise in geometry and model an important ver-
sion of the frequency assignment task for cellular net-
works. Our algorithms use exponentially fewer ran-
dom bits compared to previous results for these spe-
cial cases (O(log n) bits instead of Θ(n log n) bits).
(ii) We initiate the study of deterministic online CF-
coloring with recoloring. The goal is to use few col-
ors, but also resort to recoloring as little as possible.
We provide an algorithm for CF-coloring with respect
to halfplanes using O(log n) colors and O(n) recolor-
ings.

1 Introduction

A hypergraph is a pair (V, E), where V is a finite set
and E ⊂ 2V . The set V is called the ground set
or the vertex set and the elements of E are called
hyperedges. A proper k-coloring of a hypergraph
H = (V, E), for some positive integer k, is a func-
tion C : V → {1, 2, . . . , k} such that no S ∈ E with
|S| ≥ 2 is monochromatic. A conflict-free coloring
(CF-coloring) of H is a coloring of V with the further
restriction that for any hyperedge S ∈ E there exists a
vertex v ∈ S with a unique color (i.e., no other vertex
of S has the same color as v).

The study of conflict-free colorings was originated
in the work of Even et al. [5] and Smorodinsky [9]
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who were motivated by the problem of frequency as-
signment in cellular networks. Specifically, cellular
networks are heterogeneous networks with two differ-
ent types of nodes: base stations (that act as servers)
and clients. Base stations are interconnected by an
external fixed backbone network whereas clients are
connected only to base stations. Connections between
clients and base stations are implemented by radio
links. Fixed frequencies are assigned to base stations
to enable links to clients. Clients continuously scan
frequencies in search of a base station with good re-
ception. The fundamental problem of frequency as-
signment in such cellular networks is to assign fre-
quencies to base stations so that every client, located
within the receiving range of at least one station, can
be served by some base station, in the sense that the
client is located within the range of the station and no
other station within its reception range has the same
frequency (such a station would be in “conflict” with
the given station due to mutual interference). The
goal is to minimize the number of assigned frequen-
cies (“colors”) since the frequency spectrum is limited
and costly. In addition to the practical motivation,
this new coloring model has drawn much attention of
researchers through its own theoretical interest and
such colorings have been the focus of several recent
papers (see, e.g., [2, 3, 4, 7, 8, 10]). To capture a dy-
namic scenario where antennas can be added to the
network, Fiat et al. [4] initiated the study of online
CF-coloring of hypergraphs.

In this paper, we study the most general form of
online CF-coloring applied to arbitrary hypergraphs.
Suppose the vertices of an underlying hypergraph
H = (V, E) are given online by an adversary. Namely,
at every given time step t, a new vertex vt ∈ V is given
and the algorithm must assign vt a color such that the
coloring is a valid conflict-free coloring of the hyper-
graph that is induced by the vertices Vt = {v1, . . . , vt}
(see the exact definition in section 2). Once vt is as-
signed a color, that color cannot be changed in the fu-
ture. The goal is to find an algorithm that minimizes
the maximum total number of colors used (where the
maximum is taken over all permutations of the set V ).

We present a general framework for online CF-
coloring any hypergraph. Interestingly, this frame-
work is a generalization of some known coloring al-
gorithms. For example the Unique-Max Algorithm
of [4] can be described as a special case of our frame-
work. Also, when the underlying hypergraph is a
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simple graph then the First-Fit online algorithm is
another special case of our framework.

Based on this framework, we introduce a random-
ized algorithm and show that the maximum number
of colors used is a function of the ‘degeneracy’ of the
hypergraph. We define the notion of a k-degenerate
hypergraph as a generalization of the same notion
for simple graphs. Specifically we show that if the
hypergraph is k-degenerate, then our algorithm uses
O(k log n) colors with high probability. This is asymp-
totically tight for any constant k.

As demonstrated in [4], the problem of online
CF-coloring the very special hypergraph induced by
points on the real line with respect to intervals is
highly non-trivial. Kaplan and Sharir [7] studied the
special hypergraph induced by points in the plane
with respect to halfplanes and unit discs and obtained
a randomized online CF-coloring with O(log3 n) colors
with high probability. Recently, the bound Θ(log n)
just for these two special cases was obtained indepen-
dently by Chen [3]. Our algorithm is more general and
uses only Θ(log n) colors; an interesting evidence to
our algorithm being fundamentally different from the
ones in [3, 4, 7], when used for the special case of hy-
pergraphs that arise in geometry, is that it uses expo-
nentially fewer random bits. The algorithms of [3, 7]
use Θ(n log n) random coin flips and our algorithm
uses O(log n) random coin flips. Another interesting
corollary of our result is that we obtain a randomized
online coloring for k-inductive graphs with O(k log n)
colors with high probability. This case was studied
by Irani [6] who showed that the first-fit greedy algo-
rithm achieves the same bound deterministically.
Deterministic online CF-coloring with recol-
oring: We initiate the study of online CF-coloring
where at each step, in addition to the assignment of
a color to the newly inserted point, we allow some
recoloring of other points. The bi-criteria goal is to
minimize the total number of recoloring done by the
algorithm and the total number of colors used by the
algorithm. We provide an algorithm for CF-coloring
with respect to halfplanes using O(log n) colors and
O(n) recolorings.

2 Preliminaries

Definition 1 Let H = (V, E) be a hypergraph. For
a subset V ′ ⊂ V let H(V ′) be the hypergraph (V ′, E ′)
where E ′ = {e∩V ′|e ∈ E}. H(V ′) is called the induced
hypergraph on V ′.

Definition 2 For a hypergraph H = (V, E), the De-
launay graph G(H) is the simple graph G = (V,E)
where the edge set E is defined as E = {(x, y) |
{x, y} ∈ E} (i.e., G is the graph on the vertex set
V whose edges consist of all hyperedges in H of car-
dinality two).

Definition 3 A simple graph G = (V,E) is called k-
degenerate (or k-inductive) for some positive integer
k, if every (vertex-induced) subgraph of G has a vertex
of degree at most k.

Definition 4 Let k > 0 be a fixed integer and let
H = (V, E) be a hypergraph on n vertices. Fix a sub-
set V ′ ⊂ V . For a permutation π of V ′ such that V ′ =
{v1, ..., vi} (where i = |V ′|) let Cπ(V ′) =

∑i
j=1 d(vj),

where d(vj) = |{l < j|(vj , vl) ∈ G(H({v1, ..., vj}))}|,
that is, d(vj) is the number of neighbors of vj in
the Delaunay graph of the hypergraph induced by
{v1, ..., vj}. Assume that ∀V ′ ⊂ V and for all per-
mutations π ∈ S|V ′| we have Cπ(V ′) ≤ k |V ′|. Then
we say that H is k-degenerate.

It is not difficult to see that our definition of a k-
degenerate hypergraph is a generalization of that of a
k-degenerate graph.

3 An online CF-coloring framework

Let H = (V,E) be any hypergraph. Our goal is to
define a framework that colors the vertices V in an
online fashion. That is, the vertices of V are revealed
by an adversary one at a time. At each time step t, the
algorithm must assign a color to the newly revealed
vertex vt. This color cannot be changed in the future.
The coloring has to be conflict-free for all the induced
hypergraphs H(Vt) t = 1, . . . , n, where Vt ⊂ V is the
set of vertices revealed by time t.

For a fixed positive integer h, let A = {a1, . . . , ah}
be a set of h auxiliary colors (not to be confused with
the set of ‘real’ colors used for the CF-coloring: {1,
2, . . . }). Let f : N → A be some fixed function. We
now define the framework that depends on the choice
of the function f and the parameter h.

A table (to be updated online) is maintained where
each entry i at time t is associated with a subset V i

t ⊂
Vt in addition to an auxiliary proper coloring of H(V i

t )
with at most h colors. We say that f(i) is the color
that represents entry i in the table. At the beginning
all entries of the table are empty. Suppose all entries
of the table are updated until time t − 1 and let vt

be the vertex revealed by the adversary at time t.
The framework first checks if an auxiliary color can
be assigned to vt such that the auxiliary coloring of
V 1

t−1 together with the color of vt is a proper coloring
of H(V 1

t−1 ∪ {vt}). Any (proper) coloring procedure
can be used by the framework. For example a first-fit
greedy one in which all colors in the order a1, . . . ,
ah are checked until one is found. If such a color
cannot be found for vt, then entry 1 is left with no
changes and the process continues to the next entry.
If however, such a color can be assigned, then vt is
added to the set V 1

t−1. Let c denote such an auxiliary
color assigned to vt. If this color is the same as f(1)
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(the auxiliary color that is associated with entry 1),
then the final color in the online CF-coloring of vt is
1 and the updating process for the t-th vertex stops.
Otherwise, if an auxiliary color cannot be found or
if the assigned auxiliary color is not the same as the
color associated with this entry, the updating process
continues to the next entry. The updating process
stops at the first entry i for which vt is both added to
V i

t and the auxiliary color assigned to vt is the same as
f(i). The color of vt in the final conflict-free coloring
is then set to i.

It is possible that vt never gets a final color. In
this case we say that the framework does not halt.
However, termination can be guaranteed by impos-
ing some restrictions on the auxiliary coloring method
and the choice of the function f . For example, if first-
fit is used for the auxiliary colorings at any entry and
if f is the constant function f(i) = a1, for all i, then
the framework is guaranteed to halt for any time t.
In section 4 we derive a randomized online algorithm
based on this framework. It is not difficult to prove
that the algorithm halts after a “small” number of
entries with high probability (w.h.p.).

Lemma 1 If the above framework halts for any ver-
tex vt then it produces a valid online CF-coloring.

4 An online randomized CF-coloring algorithm

There is a randomized online CF-coloring in the obliv-
ious adversary model that always produces a valid col-
oring and the number of colors used is related to the
degeneracy of the underlying hypergraph in a manner
described in theorem 2. Proofs will be included in a
longer version of this paper.

Theorem 2 Let H = (V, E) be a k-degenerate hy-
pergraph on n vertices. Then there exists a random-
ized online CF-coloring for H which uses at most
O(log1+ 1

4k+1
n) = O(k log n) colors with high prob-

ability.

The algorithm is based on the framework of sec-
tion 3. In order to define the algorithm, we need to
choose: (a) the set of auxiliary colors of each entry,
(b) the algorithm we use for the auxiliary coloring at
each entry, and (c) the function f . We use: (a) auxil-
iary colors in A = {a1, . . . , a2k+1}, (b) a first-fit algo-
rithm for the auxiliary coloring, and (c) for each entry
i, the representing color f(i) is chosen uniformly at
random from A. Our assumption on the hypergraph
H (being k-degenerate) implies that at least half of
the vertices up to time t that ‘reached’ entry i (but
not necessarily added to entry i), and we denote by
Xt

≥i, have been actually given some auxiliary color
at entry i (that is,

∣∣V i
t

∣∣ ≥ 1
2

∣∣Xt
≥i

∣∣). This is easily

implied by the fact that at least half of those ver-
tices vt have at most 2k neighbors in the Delaunay
graph of the hypergraph induced by Xt−1

≥i (since the
sum of these quantities is at most k

∣∣Xt
≥i

∣∣ and since
V i

t ⊂ Xt
≥i). Therefore since we have 2k + 1 colors

available, there is always a free color to assign to such
a vertex. The following lemma shows that if we use
one of these ‘free’ colors then the updated coloring is
indeed a proper coloring of the corresponding induced
hypergraph as well.

Lemma 3 Let H = (V, E) be a k-degenerate hyper-
graph and let V j

t be the subset of V at time t and at
level j as produced by the above algorithm. Then for
any j and t if vt is assigned a color distinct from all
its neighbors in the Delaunay graph G(H(V j

t )) then
this color together with the colors assigned to the ver-
tices V j

t−1 is also a proper coloring of the hypergraph

H(V j
t ).

Lemma 4 Let H = (V, E) be a hypergraph and let
C be a coloring produced by the above algorithm on
an online input V = {vt} for t = 1, . . . , n. Let Xi (re-
spectively X≥i) denote the random variable counting
the number of points of V that were assigned a final
color at entry i (respectively a final color at some en-
try ≥ i). Let Ei = E[Xi] and E≥i = E[X≥i] (note
that X≥i+1 = X≥i −Xi). Then:

E≥i ≤
(

4k + 1
4k + 2

)i−1

n

Lemma 5 The expected number of colors used by
the above algorithm is at most log 4k+2

4k+1
n + 1.

Remark: In the above description of the algorithm,
all the random bits are chosen in advance (by deciding
the values of the function f in advance). However, one
can be more efficient and calculate the entry f(i) only
at the first time we need to update entry i, for any i.
Since at each entry we need to use O(log k) random
bits and we showed that the number of entries used
is O(k log n) w.h.p then the total number of random
bits used by our algorithm is O(k log k log n) w.h.p.

5 Application to Geometry

Our randomized algorithm has applications to CF col-
orings of certain geometric hypergraphs studied in
[3, 4, 7]. We obtain the same asymptotic result as in
[3], but with better constants of proportionality and
much fewer random bits. An algorithm for intervals
is given in [1]. When the hypergraph H is induced
by points in the plane intersected by halfplanes or
unit disks, we obtain online randomized algorithms
that use O(log n) colors w.h.p. We summarize it as
follows:
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Lemma 6 Let V be a finite set of n points in the
plane and let E be all subsets of V that can be ob-
tained by intersecting V with a halfplane. Then the
hypergraph H = (V, E) is 4-degenerate.

Proof. The proof uses a few geometric lemmas. De-
tails are omitted. �

Corollary 7 Let H be the hypergraph as in lemma 6.
Then the expected number of colors used by our ran-
domized online CF-coloring applied to H is at most
log 18

17
n + 1. Also the actual number of colors used

is O(log 18
17

n) with high probability. The number of

random bits is O(log n) with high probability

Proof. The proof follows immediately from lemma 6,
lemma 5 and theorem 2. �

Proposition 8 Let V be a finite set of n points in
the plane and let E be all subsets of V that can be
obtained by intersecting V with a unit disc. Then
there exists a randomized online algorithm for CF-
coloring H which uses O(log n) colors and O(log n)
random bits with high probability.

Proof. By a technique of Kaplan and Sharir [7] and
Corollary 7. �

6 Deterministic online CF-coloring with recoloring

In this section we describe a deterministic algorithm
for online CF-coloring points with respect to half-
planes that uses O(log n) colors and recolors O(n)
points. At every time instance t, the algorithm main-
tains the following invariant (Vt is the set of points
that have appeared): All points (strictly) inside the
convex hull of Vt are colored with the same special
color, say ‘?’. The set of points on the convex hull
of Vt, denoted by CH(Vt), are colored with another
set of colors, such that every set of consecutive points
on the convex hull has a point with a unique color.
The number of colors used in CH(Vt) must be log-
arithmic on t. It is not difficult to see that every
subset of points of Vt induced by a halfplane contains
a set of consecutive points, and thus the whole col-
oring is conflict-free. We describe how the algorithm
maintains the above invariant. A new point vt+1 that
appears at time t + 1 is colored as follows: If it is
inside the convex hull of Vt, then it gets color ‘?’. If
however it is in CH(Vt+1), it might force some points
that where in CH(Vt) to get inside the convex hull
of Vt+1. In order to maintain the invariant, if there
exist such points, they are recolored to ‘?’, and vt+1

is colored greedily, so that the coloring of CH(Vt+1) is
conflict-free (it can be proved that no new color is in-
troduced). If, on the other hand, no points of CH(Vt)
are forced into the convex hull, then vt+1 ∈ CH(Vt+1)
is colored with the algorithm that is used for intervals,

given in [1], with a slight adaptation to address the
closed curve nature of the convex hull. In that last
case, in order to maintain logarithmic number of col-
ors on t, one recoloring of a point in CH(Vt+1) might
be needed. The number of recolorings is guaranteed
to be O(n), because for every insertion, at most one
recoloring happens on the new convex hull, and every
point colored with ‘?’ stays with that color, because
the convex hull never shrinks.
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