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Abstract. We consider the k-strong conflict-free (k-SCF) coloring of a
set of points on a line with respect to a family of intervals: Each point
on the line must be assigned a color so that the coloring is conflict-free
in the following sense: in every interval I of the family there are at least
k colors each appearing exactly once in I.
We first present a polynomial time algorithm for the general problem;
the algorithm has approximation ratio 2 when k = 1 and 5 − 2

k
when

k > 1 (our analysis is tight). In the special case of a family that con-
tains all possible intervals on the given set of points, we show that a
2-approximation algorithm exists, for any k ≥ 1. We also show that the
problem of deciding whether a given family of intervals can be 1-SCF
colored with at most q colors has a quasipolynomial time algorithm.

1 Introduction

A coloring of the vertices of a hypergraph is said to be conflict-free if every
hyperedge contains a vertex whose color is unique among those colors assigned
to the vertices of the hyperedge. We denote by Z+ the set of positive integers
and by N the set of non-negative integers.

Definition 1. (CF coloring) A conflict-free vertex coloring of a hypergraph
H = (V, E) is a function C : V → Z+ such that for each e ∈ E there exists a
vertex v ∈ e such that C(u) 6= C(v) for any u ∈ e with u 6= v.

Conflict-free coloring was first considered in [8]. It was motivated by a fre-
quency assignment problem in cellular networks. Such networks consist of fixed-
position base stations, each assigned a fixed frequency, and roaming clients.
Roaming clients have a range of communication and come under the influence
of different subsets of base stations. This situation can be modeled by means of
a hypergraph whose vertices correspond to the base stations and whose hyper-
edges correspond to the different subsets of base stations corresponding to ranges
of roaming agents. A conflict-free coloring of such a hypergraph corresponds to
an assignment of frequencies to the base stations, which enables any client to
connect to one of the base stations (holding the unique frequency in the client’s
range) without interfering with the other base stations. The goal is to minimize
the number of assigned frequencies. Due to both its practical motivations and its



theoretical interest, conflict-free coloring has been the subject of several papers;
a survey of results in the area is given in [14].

CF-coloring also finds application in RFID (Radio Frequency Identification)
networks. RFID allows a reader device to sense the presence of a nearby object
by reading a tag attached to the object itself. To improve coverage, multiple
RFID readers can be deployed in an area. However, two readers trying to access
a tagged device simultaneously might cause mutual interference. It can be shown
that CF-coloring of the readers can be used to assure that every possible tag
will have a time slot and a single reader trying to access it in that time slot [14].

The notion of k-strong CF coloring (k-SCF coloring), first introduced in
[2], extends that of CF-coloring. A k-SCF coloring is a coloring that remains
conflict-free after an arbitrary collection of k− 1 vertices is deleted from the set
[1]. In the context of cellular networks, a k-SCF coloring implies that for any
client in an area covered by at least k base stations, there always exist at least
k different frequencies the client can use to communicate without interference.
Therefore, up to k clients can be served at the same location, or the system can
deal with malfunctioning of at most k−1 base stations per location. Analogously,
in the RFID networks context, a k-SCF coloring corresponds to a fault-tolerant
activation protocol, i.e., every tag can be read as long as at most k − 1 readers
are broken. A CF-coloring is just a 1-SCF coloring.

We will allow the coloring function C : V → Z+ to be a partial function (i.e.,
some vertices are not assigned a color). Alternatively, we can use a special color
‘0’ given to vertices that are not assigned any positive color and obtain a total
function C : V → N. Then, we arrive at the following definition.

Definition 2. (k-SCF coloring) Let H = (V, E) be a hypergraph and k ∈ Z+.
A coloring C : V → N is called a k-strong conflict-free coloring if for every
e ∈ E at least min{|e|, k} positive colors are unique in e, namely there exist
c1, . . . , cmin{|e|,k} ∈ Z+ such that |{v | v ∈ e, C(v) = ci}| = 1, for i = 1, . . . ,
min{|e|, k}. The goal is to minimize the number of positive colors in the range
of the k-SCF coloring function C. We denote by χ∗k(H) the smallest number of
positive colors in any possible k-SCF coloring of H.

Remark 1. We claim that this variation of conflict-free coloring, with the partial
coloring function or the placeholder color ‘0’, is interesting from the point of
view of applications. A vertex with no positive color assigned to it can model
a situation where a base station is not activated at all, and therefore the base
station does not consume energy. One can also think of a bi-criteria optimization
problem where a conflict-free assignment of frequencies has to be found with
small number of frequencies (in order to conserve the frequency spectrum) and
few activated base stations (in order to conserve energy). It is not difficult to
see that a partial SCF coloring with q positive colors implies always a total SCF
coloring with q + 1 positive colors.

SCF-coloring points with respect to intervals. Several authors recently
focused on the special case of CF coloring n collinear points with respect to the



family of all intervals. The problem can be modeled in the hypergraph

Hn = ([n], I [n]) with [n] = {1, . . . , n} and I [n] = {{i, . . . , j} | 1 ≤ i ≤ j ≤ n},

where each (discrete) interval is a set of consecutive points.
Conflict-free coloring for intervals models the assignment of frequencies in

a chain of unit disks; this arises in approximately unidimensional networks as
in the case of agents moving along a road. Moreover, it is important because it
plays a role in the study of conflict-free coloring for more complicated cases, as
for example in the general case of CF coloring of unit disks [8, 11].

While some papers require the conflict-free property for all possible intervals
on the line, in many applications good reception is needed only at some locations,
i.e., it is sufficient to supply only a given subset of the cells of the arrangement of
the disks [10]. In the context of channel assignment for broadcasting in a wireless
mesh network, it can occur that, at some step of the broadcasting process, sparse
receivers of the broadcast message are within the transmission range of a linear
sequence of transmitters. In this case only part of the cells of the linear arrange-
ments of disks representing the transmitters are involved [12, 15]. In this work we
consider the k-strong conflict-free coloring of points with respect to an arbitrary
family of intervals. Hence, in the remainder, we consider subhypergraphs of Hn.
We shall refer to these subhypergraphs of the form H = ([n], I), where I ⊆ I [n],
as interval hypergraphs and to Hn as the complete interval hypergraph.

Conflict-free coloring the complete interval hypergraph was first studied in
[8], where it was shown that χ∗1(Hn) = blog nc+ 1 †. The on-line version of the
CF coloring problem for complete interval hypergraphs, where points arrive one
by one and the coloring needs to remain CF all the time, has been subsequently
considered in [3–5].

The problem of CF-coloring the points of a line with respect to an arbitrary
family of intervals is studied in [10]. The k-SCF coloring problem was first con-
sidered in [2] and has since then been studied in various papers under different
scenarios, we refer the reader to [14] for more details on the subject. Recently,
the minimum number of colors needed for k-SCF coloring the complete interval
hypergraph Hn has been studied in [7], where the exact number of needed colors
for k = 2 and k = 3 has been obtained. Horev et al. show that Hn admits a
k-SCF coloring with k log2 n colors, for any k [9].

Our results. In Section 2, we give an algorithm which outputs a k-SCF coloring
of the points of the input interval hypergraph H, for any fixed value of k ≥ 1. The
algorithm has an approximation factor 5−2/k in the case k ≥ 2 (approximation
factor 2 in the case k = 1); moreover, it optimally uses k colors if for any I, J ∈ I,
interval I is not a subset of J and they differ in at least k points. In Section 3, we
consider the problem of k-SCF coloring the complete interval hypergraph Hn. We
give a very simple k-SCF coloring algorithm for Hn that uses k

(⌊
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⌈
n
k

⌉⌋
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)

colors and show a lower bound of
⌈
k
2

⌉ ⌈
log n

k

⌉
colors. In section 4, we show that

† Unless otherwise specified, all logarithms are in base 2.



the decision problem whether a given interval hypergraph can be CF-colored
with at most q colors has a quasipolynomial time algorithm.

Notation. Through the rest of this paper we consider interval hypergraphs on
n points. Given I ∈ I, we denote the leftmost (minimum) and the rightmost
(maximum) of the points of the interval I by `(I) = min{p | p ∈ I} and r(I) =
max{p | p ∈ I}, respectively. We will use the following order relation on the
intervals of I.

Definition 3. (Intervals ordering) For all I, J ∈ I,

I ≺ J ⇐⇒ (r(I) < r(J)) or (r(I) = r(J) and `(I) > `(J)).

I ∈ I is called the i-th interval in I if I = {I1, . . . , Im}, I1 ≺ I2 ≺ · · · ≺ Im,
and I = Ii.

Given a family I, the subfamily of intervals of I that are not contained in
I and whose rightmost (resp. leftmost) point belongs to I is denoted by LI(I)
(resp. RI(I)), that is

LI(I) = {J ∈ I | J 6⊆ I, r(J) ∈ I} and RI(I) = {J ∈ I | J 6⊆ I, `(J) ∈ I}

Clearly, J ≺ I (resp. I ≺ J) for any J ∈ LI(I) (resp. J ∈ RI(I)) with J 6= I.
We denote by MI(I) the subfamily of all the intervals contained in I ∈ I

MI(I) = {J | J ∈ I, J ⊂ I}.

2 A k-SCF coloring algorithm

We present an algorithm for k-SCF coloring any interval hypergraph H =
([n], I). We prove that our algorithm achieves an approximation ratio 2 if k = 1
and an approximation ratio 5− 2

k if k ≥ 2; we show that the algorithm is optimal
when I consists of intervals differing in at least k points and not including any
other interval in I. We say that an interval I ∈ I is k-colored under coloring
C if its points are colored with at least min{|I|, k} unique positive colors, where
a color c is unique in I if there is exactly one point p ∈ I such that C(p) = c.
The k-SCF coloring algorithm, k-COLOR(I), is given in Fig. 1. The number of
colors is upper bounded by the number of iterations performed by the algorithm
times c(k), where c(k) = 2k + dk/2e − 1.

At each step t of the algorithm a subset Pt of points of [n] is selected (through
algorithm SELECT), then c(k) colors are assigned in cyclic sequence to the
ordered sequence (from the minimum to the maximum) of the selected points.
The intervals that are k-colored at the end of the step t are inserted in the set
Xt and discarded. The algorithm ends when all the intervals in I have been
discarded. At each step t a new set of c(k) colors is used.
A point p ∈ [n] can be re-colored several times during different steps of the
k-COLOR algorithm; its color at the end of algorithm is the last assigned one.



k-COLOR(I):
Set t = 1.
I1 = I. [It is the set of intervals not k-colored by the beginning of step t]
X1 = ∅. [Xt ⊂ It contains the intervals that become k-colored during step t]
while It 6= ∅

Execute the following step t
1. Let Pt = {p0, p1, . . . , pnt} be the set returned by SELECT(It)
2. for i = 0 to nt

Assign to pi color ci = (t− 1)c(k) + (i mod c(k)) + 1
3. for each I ∈ It

if I is k-colored then Xt = Xt ∪ {I}
4. It+1 = It \ Xt

5. t = t+ 1

SELECT(It):
Set Pt = ∅. [Pt represents the set of selected points at step t]
for each I ∈ It by increasing order according to relation ≺ [see Def.3]

if |I ∩ Pt| < min{|I|, k} then
1. Let Pt(I) be the set of largest min{|I|, k} − |I ∩ Pt| points of I \ Pt

2. Pt = Pt ∪ Pt(I)
Return Pt

Fig. 1. The k-SCF coloring algorithm for H = ([n], I)

The algorithm SELECT(It) considers intervals in It according to the ≺ rela-
tion and selects points so that Pt has at least min{|I|, k} points in each interval.
Namely, if I is the i-th interval, then it is considered at the i-th iteration of
the for loop and if less than min{|I|, k} points of I have been already selected,
then the algorithm adds the missing min{|I|, k}− |I ∩Pt| points of I to Pt (such
points are the largest unselected ones of I).

Example 1. Consider H = ([23], I), where I is the set of 13 intervals given in
Fig. 2. Run k-COLOR(I) with k = 2; hence c(2) = 4 colors are used at each
iteration. Initially, I1 = I and SELECT(I1) returns P1 = {3, 4, 7, 8, 9, 11, 12, 14,
15, 17, 18, 19, 20, 22, 23} whose points are colored with c1, c2, c3, c4 in cyclic
sequence. Only 3 intervals remain in I2; all the others are in X1, being 2-colored
at the end of step 1. SELECT(I2) returns P2 = {14, 15, 23} and these points are
colored with c5, c6, c7. Now I3 = I2 \ X2 = ∅ and the algorithm ends.

In the following, we will sketch a proof of the following theorem.

Theorem 1. Algorithm k-COLOR(I) is a polynomial k-SCF coloring algorithm

that uses less than c(k)
dk/2eχ

∗
k(H) colors on the interval hypergraph H = ([n], I).

2.1 Correctness of Algorithm k-COLOR

We denote by Pt the set of points returned by SELECT(It).



1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 237

c1 c2 c3 c4

c6

c1 c2 c3 c3c4 c1 c2 c4 c1 c2 c3

X1

X2

step 1

step 2c5 c7

Fig. 2. Example coloring by k-COLOR for k = 2

Lemma 1. Let I ∈ It, t ≥ 1.
a) |I ∩ Pt| ≥ min{|I|, k}; b) I ∈ Xt if |I ∩ Pt| ≤ 4k − 2; c) |I| ≥ k, for t ≥ 2.

Lemma 2. If I ∈ Xt then MIt(I) ⊆ Xt.
Lemma 3. If MIt(I) = ∅, then |I ∩ Pt| ≤ 2k − 1.

With the help of the above, we can prove correctness of the algorithm.

Theorem 2. Given interval hypergraph H = ([n], I), algorithm k-COLOR(I)
produces a k-SCF coloring of H.

Proof. We show by induction the following statement for each t ≥ 1: At the end
of step t of algorithm k-COLOR(I), each interval I ∈ ⋃ti=1 Xi is k-colored.
For t = 1, the statement trivially follows. Assume the statement be true for each
i ≤ t − 1 and t ≥ 2. We prove that it holds for t. Notice that, by c) of Lemma
1, for any I ∈ It it holds min{|I|, k} = k. Clearly, if I ∈ Xt, then I is k-colored
by definition of Xt. Consider then I ∈ Xi for some i ≤ t − 1. By the inductive
hypothesis I is k-colored at the end of step t − 1. By Lemma 2 we know that
MIi(I) ⊆ Xi; which implies that MIt(I) = ∅. Moreover, by Lemma 3, we have
|I ∩ Pt| ≤ 2k − 1 < c(k). This means that even if some points are recolored, all
the assigned colors will be unique in I. �

2.2 Analysis of algorithm k-COLOR(I)

In this section we evaluate the approximation factor of the algorithm k-COLOR.
We first give a lower bound tool (see also [7]). Since the vertex set [n] is usually
implied, we use the shorthand notation χ∗k(I) = χ∗k(([n], I)).

Theorem 3. Let I1, I2, I ∈ I with I1, I2 ⊂ I and I1 ∩ I2 = ∅. Let χ1 (resp.
χ2) be the number of colors used by an optimal k-SCF coloring of MI(I1) (resp.
MI(I2)). Then the number of colors used by any optimal k-SCF coloring of
MI(I) is

χ∗k(MI(I)) ≥
{

max{χ1, χ2} if k ≤ |χ2 − χ1|,
max{χ1, χ2}+

⌈
k−|χ2−χ1|

2

⌉
otherwise.



Corollary 1. Let I1, I2, I ∈ I with I1 ⊂ I, I2 ⊂ I and I1 ∩ I2 = ∅. If both
χ∗k(MI(I1)) and χ∗k(MI(I2)) are at least χ, then the number of colors used in
any optimal k-SCF coloring of MI(I) is χ∗k(MI(I)) ≥ χ+ dk/2e.

In order to assess the approximation factor of the k-COLOR algorithm, we
need the following result on the family It of intervals that still need to be k-
colored after step t of the algorithm.

Lemma 4. For each I ∈ It, there exist at least two intervals I ′, I ′′ ∈ It−1 such
that I ′, I ′′ ⊂ I and I ′ ∩ I ′′ = ∅.

In the following we assume that there exists at least an interval I ∈ I with
|I| ≥ k. Notice that if |I| < k for each I ∈ I, then each interval in I is k-colored
after the first step of the algorithm k-COLOR(I) (even using for c(k) the smaller
value max{|I| | I ∈ I}).
Lemma 5. Any k-SCF coloring algorithm on It needs k + (t− 1)

⌈
k
2

⌉
colors.

We remark that the algorithm can be implemented in time O(kn 2n), since in
each step SELECT(It) can be implemented in O(kn) time (one does not actually
need to separately consider all the intervals having the same right endpoint but
only the k shortest ones) and the number of steps is upper bounded by O(log2 n),
the worst case being the complete interval hypergraph. This together with the
following Theorem 4 and Theorem 2, proves the desired Theorem 1.

Theorem 4. Consider the interval hypergraph H = ([n], I). Then the total

number of colors used by k-COLOR(I) is less than c(k)
dk/2eχ

∗
k(I).

For a special class of interval hypergraphs, we show that the algorithm is
optimal.

Theorem 5. If for any I, J ∈ I such that J ≺ I and I ∩ J 6= ∅ it holds I 6⊆ J
and |I \ J | ≥ k, then the algorithm k-COLOR(I), running with c(k) = k on
interval hypergraph H = ([n], I), optimally uses k colors.

3 A k-SCF coloring algorithm for Hn

In this section we present a k-SCF-coloring algorithm for the complete interval
hypergraph Hn = ([n], I [n]). When k = 1 the algorithm reduces to the one in
[8]. We assume that n = hk for some integer h ≥ 1. If (h − 1)k < n < hk then
we can add the points n+ 1, n+ 2, . . . , hk.

A simple k-SCF-coloring algorithm for Hn can be obtained by partitioning
the n = hk points of V in blocks B(1), B(2), · · · , B(h) of k points and color-
ing their points recursively with the colors in the sets C1, · · · , Cblog hc+1, where
Ct = {k(t − 1) + 1, · · · , kt}, for 1 ≤ t ≤ blog hc+ 1. The points in the median
block B(bh+1

2 c) are colored with colors in C1, then the points in the blocks

B(1), · · · , B(bh+1
2 c − 1) and in the blocks B(bh+1

2 c + 1), · · · , B(h) are recur-
sively colored with the same colors in the sets C2, · · · , Cblog hc+1. Formally, the
algorithm is given in Fig. 3. It starts calling (k, n)-COLOR(1, h, 1).



The proof that algorithm (k, n)-COLOR(1, h, 1) provides a k-SCF coloring
for Hn can be easily derived by that presented in [8, 14]. Furthermore, since at
each of the blog hc + 1 recursive steps of algorithm (k, n)-COLOR a new set of
k colors is used, we have that the number of colors is at most k(blog hc + 1).
Hence, we get the following result.

Lemma 6. At the end of algorithm (k, n)-COLOR(1, dn/ke, 1) each I ∈ I is
k-SCF colored and the number of used colors is at most k

(⌊
log
⌈
n
k

⌉⌋
+ 1
)
.

(k, n)-COLOR(a, b, t):
if a ≤ b then

m = ba+b
2
c

Color the k points in B(m) with the k colors in Ct.
(k, n)-COLOR(1,m− 1, t+ 1).
(k, n)-COLOR(m+ 1, b, t+ 1).

Fig. 3. The k-SCF coloring algorithm for Hn

We remark that [9] shows that χ∗k(Hn) ≤ k log n (as a specific case of a more
general framework); however, we present the (k, n)-COLOR algorithm since it
is very simple and gives a slightly better bound.

By Corollary 1 and considering that, for the complete interval hypergraph
Hn, for each I ∈ I, any of its subintervals I ′ ⊂ I also belongs to I, we get the
following lower bound on χ∗(Hn).

Corollary 2. χ∗k(Hn) ≥
⌈
k
2

⌉ ⌈
log n

k

⌉
.

Lemma 6 together with Corollary 2 proves that (k, n)-COLOR uses at most
twice the minimum possible number of colors.

4 A quasipolynomial time algorithm

Consider the decision problem CFSubsetIntervals: “Given an interval hyper-
graph H and a natural number q, is it true that χ∗1(H) ≤ q?” Notice that the
above problem is non-trivial only when q < blog nc + 1; if q ≥ blog nc + 1 the
answer is always yes, since χ∗1(Hn) = blog nc+ 1.

Algorithm DECIDE-COLORS (Fig. 4) is a non-deterministic algorithm for
CFSubsetIntervals. The algorithm scans points from 1 to n, tries for every
point non-deterministically every color in {0, . . . , q}, and checks if all intervals
in I ending at the current point have the conflict-free property. If some interval
in I has not the conflict-free property under a non-deterministic assignment, the
algorithm answers ‘no’. If all intervals in I have the conflict-free property under
some non-deterministic assignment, the algorithm answers ‘yes’.

We check if an interval in I that ends at the current point, say t, has the
conflict-free property in the following space-efficient way. For every color c in



{0, . . . , q}, we keep track of:
(a) the closest point to t colored with c in variable pc, and
(b) the second closest point to t colored with c in variable sc.
Then, color c is occurring exactly one time in [j, t] ∈ I if and only if sc < j ≤ pc.

DECIDE-COLORS(q, I)
for c = 0 to q

sc = 0, pc = 0.
for t = 1 to n

Choose c non-deterministically from {0, . . . , q}.
sc = pc, pc = t.
for j ∈ {j | [j, t] ∈ I}

IntervalConflict = True.
for c = 1 to q

if sc < j ≤ pc then IntervalConflict = False
if IntervalConflict then return NO

return YES

Fig. 4. A non-deterministic algorithm deciding whether χ∗1(H) ≤ q

Lemma 7. The space complexity of algorithm DECIDE-COLORS is O(log2 n).

Proof. Since q = O(log n) and each point position can be encoded with O(log n)
bits, the arrays p and s (indexed by color) take space O(log2 n). All other vari-
ables in the algorithm can be implemented in O(log n) space. Therefore the above
non-deterministic algorithm has space complexity O(log2 n).

Theorem 6. CFSubsetIntervals has a quasipolynomial time deterministic
algorithm.

Proof. By standard computational complexity theory arguments (see, e.g., [13]),
we can transform DECIDE-COLORS to a deterministic algorithm solving the
same problem with time complexity 2O(log2 n), i.e., CFSubsetIntervals has a
quasipolynomial time deterministic algorithm.

5 Conclusions, further work, and open problems

The exact complexity of computing an optimal k-SCF-coloring for an interval
hypergraph remains an open problem. We have presented an algorithm with
approximation ratio 5 − 2/k when k ≥ 2 and 2 when k = 1. In a longer ver-
sion of our work, we will include a proof that our analysis of the approximation
ratio is tight when k = 1 and k = 2; when k ≥ 3, we have an instance that
forces the algorithm to use (5− 1/k)/2 > 2 times the optimal number of colors.
One might try to improve the approximation ratio, find a polynomial time ap-
proximation scheme, or even find a polynomial time exact algorithm. The last
possibility is supported by the fact that the decision version of the 1-SCF prob-
lem, CFSubsetIntervals, is unlikely to be NP-complete, unless NP-complete



problems have quasipolynomial time algorithms. Furthermore, we have shown
that the algorithm optimally uses k colors if for any I, J ∈ I, interval I is not
contained in J and they differ for at least k points. For the complete interval
hypergraph Hn, we have presented a k-SCF coloring using at most two times
the optimal number of colors. It would be interesting to close this gap.

Finally, we introduced a SCF-coloring function C : V → N, for which vertices
colored with ‘0’ can not act as uniquely-colored vertices in a hyperedge. Natu-
rally, one could try to study the bi-criteria optimization problem, in which there
two minimization goals: (a) the number of colors used, maxv∈V C(v) (minimiza-
tion of frequency spectrum use) and (b) the number of vertices with positive
colors, |{v ∈ V | C(v) > 0}| (minimization of activated base stations).
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