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We provide a framework for online conflict-free colouring any hypergraph. We introduce the no-
tion of a degenerate hypergraph, which characterises hypergraphs that arise in geometry. We use
our framework to obtain an efficient randomised online algorithm for conflict-free colouring any
k-degenerate hypergraph with n vertices. Our algorithm uses O(k log n) colours with high probabil-
ity and this bound is asymptotically optimal. Moreover, our algorithm uses O(k log k log n) random
bits with high probability. We introduce algorithms that are allowed to perform a few recolorings
of already coloured points. We provide deterministic online conflict-free colouring algorithms for
points on the line with respect to intervals and for points on the plane with respect to halfplanes
(or unit disks) that use O(log n) colours and perform a total of at most O(n) recolorings.

1. Introduction

A hypergraph is a pair (V, E), where V is a finite set and E ⊆ P(V). The set V is called the
ground set or the vertex set and the elements of E are called hyperedges. A proper k-colouring
of a hypergraph H = (V, E), for some positive integer k, is a function C : V → {1, 2, . . . , k} such
that no S ∈ E with |S | ≥ 2 is monochromatic. Let χ(H) denote the minimum integer k for which
H has a k-colouring; χ(H) is called the chromatic number of H. A conflict-free colouring of H
is a colouring of V with the further restriction that for any hyperedge S ∈ E there exists a vertex
v ∈ S with a unique colour (i.e., no other vertex of S has the same colour as v). Both proper
colouring and conflict-free colouring of hypergraphs are generalisations of vertex colouring of
graphs (the definition coincides when the underlying hypergraph is a simple graph). Therefore,
computing such colourings is at least as hard as computing vertex colourings for simple graphs.

The study of conflict-free colourings originated in the work of Even et al. [11] and Smorodin-
sky [20] who were motivated by the problem of frequency assignment in cellular networks.

† A preliminary version of this work appeared in the 34th International Colloquium on Automata, Languages and
Programming (ICALP 2007).
‡ The second author was partially supported, during his stay at the Alfréd Rényi Institute of Mathematics, by the

Discrete and Convex Geometry project (MTKD-CT-2005-014333), in the framework of the European Community’s
“Structuring the European Research Area” programme.
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Cellular networks are heterogeneous networks with two different types of nodes: base stations
(that act as servers) and clients. Base stations are interconnected by an external fixed backbone
network whereas clients are connected only to base stations. Connections between clients and
base stations are implemented by radio links. Fixed frequencies are assigned to base stations to
enable links to clients. Clients continuously scan frequencies in search of a base station with
good reception. The fundamental problem of frequency assignment in such cellular networks is
to assign frequencies to base stations so that every client, located within the receiving range of at
least one station, can be served by some base station, in the sense that the client is located within
the range of the station and no other station within its reception range has the same frequency
(such a station would be in conflict with the given station due to mutual interference). The goal
is to minimise the number of assigned frequencies (“colours”) since the frequency spectrum is
limited and costly.

Suppose we are given a set of n base stations, also referred to as antennas. Assume, for simplic-
ity, that the area covered by a single antenna is given as a disk in the plane. Namely, the location
of each antenna and its radius of transmission is fixed and is given (the transmission radii of the
antennas are not necessarily equal). Even et al. [11] showed that one can find an assignment of
frequencies to the antennas with a total of at most O(log n) frequencies such that each antenna is
assigned one of the frequencies and the resulting assignment is free of conflicts, in the preceding
sense. Furthermore, it was shown that this bound is worst-case optimal. Let R be a set of regions
in the plane. For a point p ∈ ∪r∈Rr, let r(p) = {r ∈ R | p ∈ r}. Let H(R) denote the hypergraph
(R, {r(p) | p ∈ ∪r∈R}). We say that H(R) is the hypergraph induced by R. Thus, Even et al. [11]
showed that any hypergraph induced by a family R of n discs in the plane admits a conflict-free
colouring with only O(log n) colours and that this bound is tight in the worst case. Furthermore,
such a colouring can be found in deterministic polynomial time. However, in [11] it was also
shown that finding the minimum number of colours needed to conflict-free colour a given collec-
tion of discs is NP-hard even when all discs are congruent, and an O(log n) approximation-ratio
algorithm is provided. The results of [11] were further extended in [14] by combining more
involved probabilistic and geometric ideas. The main result of [14] is a general randomised algo-
rithm which conflict-free colours any set of n “simple” regions (not necessarily convex) whose
union has “low” complexity, using a “small” number of colours. Many more variants and exten-
sions were studied in several recent works (see, e.g., [8, 10, 11, 14, 18, 20, 21, 1, 16, 5, 6, 9]).

To capture a dynamic scenario where antennas can be added to the network, Chen et al. [8] ini-
tiated the study of online conflict-free colouring of hypergraphs. They considered a very simple
hypergraph H which has its vertex set represented as a set P of n points on the line and its hyper-
edge set consists of the intersections of P with every possible interval. The set P ⊂ R is revealed
by an adversary online: Initially, P is empty, and the adversary inserts points into P, one point at
a time. Let P(t) denote the set of points revealed after the t-th point has been inserted. Each time
a point is inserted, the algorithm needs to assign a colour C(p) to it, which is a positive integer.
Once the colour has been assigned to p, it cannot be changed in the future. The colouring should
remain conflict-free at all times. That is, for any interval I and for any time t there is a colour that
appears exactly once in I ∩ P(t). Among other results, the authors of [12] provided a randomised
algorithm for online conflict-free colouring n points on the line with O(log n log log n) colours
with high probability. Their algorithm assumes that the adversary is oblivious in the sense that it
does not have access to the random bits used by the probabilistic algorithm. They also provided



Online conflict-free colouring for hypergraphs 3

a deterministic algorithm for online conflict-free colouring n points on the line with Θ(log2 n)
colours in the worst case.

1.1. An online conflict-free colouring framework
In this work, we investigate the most general form of online conflict-free colouring applied to
arbitrary hypergraphs. Suppose that the vertices of an underlying hypergraph H = (V, E) are
given online by an adversary. At every given time step t, a new vertex vt ∈ V is given and the
algorithm must assign vt a colour such that the colouring is a valid conflict-free colouring of the
hypergraph that is induced by the vertices Vt = {v1, . . . , vt} (see the exact definition in section 2).
Once vt is assigned a colour, that colour cannot be changed in the future. The goal is to find an
algorithm that minimises the maximum total number of colours used (where the maximum is
taken over all permutations of the set V).

We present a general framework for online conflict-free colouring any hypergraph. Interest-
ingly, this framework is a generalisation of some known colouring algorithms. For example the
unique maximum greedy algorithm of [8] can be described as a special case of our framework.
Also, when the underlying hypergraph is a simple graph then the first-fit greedy online algorithm
is another special case of our framework. Based on this framework, we introduce a randomised
algorithm and show that the maximum number of colours used is a function of the some natu-
ral parameter of the hypergraph which we call the degeneracy of the hypergraph. We define the
notion of a k-degenerate hypergraph as a generalisation of the same notion for simple graphs.
Specifically we show that if the hypergraph is k-degenerate, then our algorithm uses O(k log n)
colours with high probability against an oblivious adversary (see [4]). An oblivious adversary has
to commit to a specific input sequence before revealing the first vertex to the algorithm without
knowing the random bits that the algorithm is about to use.

As demonstrated in [8], the problem of online conflict-free colouring the very special hyper-
graph induced by points on the real line with respect to intervals is highly non-trivial. The best
randomised online conflict-free colouring algorithm of [12] uses O(log n log log n) colours. Chen,
Kaplan and Sharir [7, 9] studied the hypergraph induced by points in the plane with respect to
intervals, halfplanes, and unit disks and obtained randomised online conflict-free colouring algo-
rithms that use O(log n) colours with high probability. Our algorithm is more general, also uses
only O(log n) colours, and it has better constant of proportionality in front of the logarithmic fac-
tor than the algorithms of [7, 8, 9]. An interesting evidence to our algorithm being fundamentally
different from the ones in [7, 8, 9], when used for the hypergraphs mentioned above, is that our
algorithm uses exponentially fewer random bits; the algorithms of [7, 8, 9] use Ω(n) random bits
and our algorithm uses O(log n) random bits with high probability.

Another interesting corollary of our result is that we obtain a randomised online colouring for
k-inductive graphs with O(k log n) colours with high probability. This case was studied by Irani
[15] who showed that the first-fit greedy algorithm achieves the same bound deterministically (a
very short proof of this fact can be found in [22]).

1.2. Deterministic online conflict-free colouring with recolouring
We initiate the study of online conflict-free colouring where at each step, in addition to the as-
signment of a colour to the newly inserted point, we allow some recolouring of other points.
The bi-criteria goal is to minimise the total number of recolorings done by the algorithm and the
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total number of colours used by the algorithm. We introduce an online algorithm for conflict-free
colouring points on the line with respect to intervals, where we recolour at most one point at
each step. Our algorithm uses Θ(log n) colours. This is in contrast with the O(log2 n) colours
used by the best known deterministic algorithm by [8] that does not recolour points. We also
provide an online algorithm for conflict-free colouring points on the plane with respect to half-
planes that uses Θ(log n) colours and the total number of recolorings is O(n). For this problem
no deterministic algorithm that uses a polylogarithmic number of colours was known before.

From the application point of view, there is motivation to study this recolouring model. The
frequency spectrum is quite expensive, so a solution which uses a logarithmic number of colours
is desirable. On the other hand excessive recolouring is not desirable, because if a base station is
given another colour there is a disruption of service for all agents connected to it.

Organisation. In section 2 we define the notion of a k-degenerate hypergraph. In section 3 we
present the general framework for online conflict-free colouring of hypergraphs. In section 4 we
introduce the randomised algorithm derived from the framework. In section 5 we show determin-
istic online algorithms for intervals and halfplanes with recolouring. In section 6 we describe the
results for several hypergraphs that arise in geometric contexts. Finally, in section 7 we conclude
with a discussion and some open problems.

2. Preliminaries

We start with some basic definitions.

Definition. Let H = (V, E) be a hypergraph. For a subset V ′ ⊆ V let H(V ′) be the hypergraph
(V ′, E′) where E′ = {e ∩ V ′|e ∈ E}. We say that H(V ′) is the hypergraph induced by V ′.

Definition. For a hypergraph H = (V, E), the Delaunay graph G(H) is the simple graph G =

(V, F) where the edge set F is defined as F =
{
{x, y} | {x, y} ∈ E

}
(i.e., G is the graph on the vertex

set V whose edges consist of all hyperedges in H of cardinality two).

A common graph theoretic definition follows.

Definition. A graph G = (V, E) is called k-inductive (or k-degenerate) for some positive integer
k, if every (vertex-induced) subgraph of G has a vertex of degree at most k.

We sensibly extend to a similar definition for hypergraphs.

Definition (degenerate hypergraph). Let k > 0 be a fixed integer and let H = (V, E) be a
hypergraph on the n vertices v1, . . . , vn. For a permutation π : {1, . . . , n} → {1, . . . , n} define the n
partial sums, indexed by t = 1, . . . , n,

S π
t =

t∑
j=1

d(vπ( j)),
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where

d(vπ( j)) =
∣∣∣{i < j | {vπ(i), vπ( j)} ∈ G(H({vπ(1), ..., vπ( j)}))

}∣∣∣,
that is, d(vπ( j)) is the number of neighbours of vπ( j) in the Delaunay graph of the hypergraph
induced by {vπ(1), ..., vπ( j)}. Assume that for all permutations π and for every t ∈ {1, . . . , n} we
have

S π
t ≤ kt. (2.1)

Then, we say that H is k-degenerate.

3. A framework for online conflict-free colouring

Let H = (V, E) be any hypergraph. Our goal is to define a framework that colours the vertices of
V in an online fashion, i.e., when the vertices of V are revealed by an adversary one at a time. At
each time step t, the algorithm must assign a colour to the newly revealed vertex vt. This colour
cannot be changed in future times t′ > t. The colouring has to be conflict-free for all the induced
hypergraphs H(Vt) with t = 1, . . . , n, where Vt ⊆ V is the set of vertices revealed by time t.

For a fixed positive integer h, let A = {a1, . . . , ah} be a set of h auxiliary colours. This aux-
iliary colours set should not be confused with the set of main colours used for the conflict-free
colouring: {1, 2, . . . }. Let f : N+ → A be some fixed function. In the following, we define the
framework that depends on the choice of the function f and the parameter h.

A table (to be updated online) is maintained with row entries indexed by the variable i with
range in N+. Each row entry i at time t is associated with a subset V i

t ⊆ Vt in addition to an
auxiliary proper non-monochromatic colouring of H(V i

t ) with at most h colours. We say that f (i)
is the auxiliary colour that represents entry i in the table. At the beginning all entries of the table
are empty. Suppose all entries of the table are updated until time t − 1 and let vt be the vertex
revealed by the adversary at time t. The framework first checks if an auxiliary colour can be
assigned to vt such that the auxiliary colouring of V1

t−1 together with the colour of vt is a proper
non-monochromatic colouring of H(V1

t−1 ∪ {vt}). Any (proper non-monochromatic) colouring
procedure can be used by the framework. For example a first-fit greedy method in which all
colours in the order a1, . . . , ah are checked until one is found. If such a colour cannot be found
for vt, then entry 1 is left with no changes and the process continues to the next entry. If however,
such a colour can be assigned, then vt is added to the set V1

t−1. Let c denote such an auxiliary
colour assigned to vt. If this colour is the same as f (1) (the auxiliary colour that represents entry
1), then the final colour in the online conflict-free colouring of vt is 1 and the updating process
for the t-th vertex stops. Otherwise, if an auxiliary colour cannot be found or if the assigned
auxiliary colour is not the same as f (1), then the updating process continues to the next entry.
The updating process stops at the first entry i for which vt is both added to V i

t and the auxiliary
colour assigned to vt is the same as f (i). Then, the main colour of vt in the final conflict-free
colouring is set to i.

It is possible that vt never gets a final colour. In this case we say that the framework does
not halt. However, termination can be guaranteed by imposing some restrictions on the auxil-
iary colouring method and the choice of the function f . For example, if first-fit is used for the
auxiliary colourings at any entry and if f is the constant function f (i) = a1, for all i, then the
framework is guaranteed to halt for any time t. An example of the framework for conflict-free
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colouring with respect to intervals is given in the example in section 6. In section 4 we derive
a randomised online algorithm based on this framework. This algorithm always halts, or to be
more precise halts with probability 1, and moreover it halts after a “small” number of entries with
high probability. We prove that the above framework produces a valid conflict-free colouring in
case it halts.

Lemma 3.1. If the above framework halts for every vertex vt then it produces a valid online
conflict-free colouring of H.

Proof. Let H(Vt) be the hypergraph induced by the vertices already revealed at time t. Let S be
a hyperedge in this hypergraph and let j be the maximum integer for which there is a vertex v of
S coloured with j. We claim that exactly one such vertex in S exists. Assume to the contrary that
there is another vertex v′ in S coloured with j. This means that at time t both vertices v and v′

were present at entry j of the table (i.e., v, v′ ∈ V j
t ) and that they both got an auxiliary colour (in

the auxiliary colouring of the set V j
t ) which equals f ( j). However, since the auxiliary colouring

is a proper non-monochromatic colouring of the induced hypergraph at entry j, S ∩ V j
t is not

monochromatic so there must exist a third vertex v′′ ∈ S ∩V j
t that was present at entry j and was

assigned an auxiliary colour different from f ( j). Thus, v′′ got its final colour in an entry greater
than j, a contradiction to the maximality of j in the hyperedge S . This completes the proof of the
lemma.

The above algorithmic framework can also describe some well-known deterministic algo-
rithms. For example, if first-fit is used for auxiliary colourings and f is the constant function,
f (i) = a1, for all i, then:

• If the input hypergraph is induced by points on a line with respect to intervals as in example 3
then the algorithm derived from the framework becomes identical to the unique maximum
greedy algorithm described and analysed in [8].

• If the input is a k-inductive graph (also called k-degenerate graph), the derived algorithm is
identical to the first-fit greedy algorithm for colouring graphs online. The performance of the
first-fit greedy algorithm for restricted classes of graphs has been analysed in several papers
[13, 17, 15]. Especially for k-inductive graphs, the first-fit greedy algorithm is analysed by
Irani [15], who proved that it uses O(k log n) colours. Our framework can be used to give an
alternative simpler proof of the aforementioned result (see [22] for details).

4. An online randomised conflict-free colouring algorithm

We devise a randomised online conflict-free colouring algorithm in the oblivious adversary
model. In this model, the adversary has to commit to a permutation according to the order of
which the vertices of the hypergraph are revealed to the algorithm. Namely, the adversary does
not have access to the random bits that are used by the algorithm. The algorithm always produces
a valid colouring and the number of colours used is related to the degeneracy of the underlying
hypergraph in a manner described in the following theorem.
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Theorem 4.1. Let H = (V, E) be a k-degenerate hypergraph on n vertices. Then, there exists a
randomised online conflict-free colouring algorithm for H which uses at most O(log1+ 1

4k+1
n) =

O(k log n) colours with high probability against an oblivious adversary.

The algorithm is based on the framework of section 3. In order to define the algorithm, we
need to state what is (a) the set of auxiliary colours of each entry, (b) the function f , and (c) the
algorithm we use for the auxiliary colouring at each entry. We use the set of auxiliary colours
A = {a1, . . . , a2k+1}. For each entry i, the representing colour f (i) is chosen uniformly at random
from A. We use a first-fit algorithm for the auxiliary colouring.

Our assumption on the hypergraph H (being k-degenerate) implies that at least half of the
vertices up to time t that reached entry i (but not necessarily added to entry i), denoted by Xt

≥i,
have been actually given some auxiliary colour at entry i (that is,

∣∣∣V i
t

∣∣∣ ≥ 1
2

∣∣∣Xt
≥i

∣∣∣). This is due to
the fact that at least half of those vertices vt have at most 2k neighbours in the Delaunay graph
of the hypergraph induced by Xt−1

≥i (since the sum of these quantities is at most k
∣∣∣Xt
≥i

∣∣∣ and since
V i

t ⊆ Xt
≥i). Therefore, since we have 2k+1 colours available, there is always an available colour to

assign to such a vertex. The following lemma shows that if we use one of these available colours
then the updated colouring is indeed a proper non-monochromatic colouring of the corresponding
induced hypergraph as well.

Lemma 4.2. Let H = (V, E) be a k-degenerate hypergraph and let V j
t be the subset of V at

time t and at level j as produced by the above algorithm. Then, for any j and t if vt is assigned a
colour distinct from all its neighbours in the Delaunay graph G(H(V j

t )) then this colour together
with the colours assigned to the vertices V j

t−1 is also a proper non-monochromatic colouring of
the hypergraph H(V j

t ).

Proof. By induction on t. The induction hypothesis is that H(V j
t−1) is properly (that is, non-

monochromatically) coloured by the auxiliary colouring. Let vt be the vertex added to the hy-
pergraph induced by the j-th entry at time t. Any hyperedge S that contains at least two vertices
of V j

t−1 or does not contain vt is not monochromatic by the induction hypothesis. Thus, we are
only concerned with hyperedges of cardinality two that contain vt and exactly one vertex of V j

t−1.
However, we assumed that vt obtained a colour that is distinct from any vertex u such that {u, vt}

is a hyperedge of H(V j
t ) (Those are exactly the neighbours of vt in the corresponding Delaunay

graph). Thus, any such hyperedge {u, vt} is also not monochromatic. This completes the inductive
step and hence the proof of the lemma.

We also prove that for every vertex vt, our algorithm always halts, or more precisely halts with
probability 1.

Proposition 4.3. For every vertex vt, the algorithm halts with probability 1.

Proof. In order for the framework not to halt for some vertex vt, it must be the case that vertex
vt reaches every entry i ∈ N+ and in every entry i the auxiliary colour of vt is different from f (i).
If an entry is empty before time t and vt reaches that entry, then vt gets the auxiliary colour a1

in that entry and the probability that vt does not get a main colour in that entry is 1 − h−1, where
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h = 2k + 1 is the number of auxiliary colours. The aforementioned events are independent for
different empty entries. At time t, all but at most t − 1 entries are empty. The above discussion
implies the following.

Pr[algorithm does not halt for vt] =

Pr[algorithm does not assign a main colour to vt in any entry] ≤

Pr[algorithm does not assign a main colour to vt in any empty entry] =

Pr[
⋂

i : empty entry

(algorithm does not assign a main colour to vt in entry i)] =∏
i : empty entry

Pr[algorithm does not assign a main colour to vt in entry i] =∏
i : empty entry

(1 − h−1) = lim
j→∞

(1 − h−1) j = 0

and therefore Pr[algorithm halts for vt] = 1.

We proceed to the analysis of the number of colours used by the algorithm, proving theo-
rem 4.1.

Lemma 4.4. Let H = (V, E) be a hypergraph and let C be a colouring produced by the above
algorithm on an online input V = {vt} for t = 1, . . . , n. Let Xi (respectively X≥i) denote the
random variable counting the number of points of V that were assigned a final colour at entry
i (respectively a final colour at some entry ≥ i). Let Ei = E[Xi] and E≥i = E[X≥i] (note that
X≥i+1 = X≥i − Xi). Then:

E≥i ≤

(
4k + 1
4k + 2

)i−1

n.

Proof. By induction on i. The case i = 1 is trivial. Assume that the statement holds for i.
To complete the induction step, we need to prove that E≥i+1 ≤ ( 4k+1

4k+2 )in. By the conditional
expectation formula, we have for any two random variables X, Y that E[X] = E[E[X | Y]]. Thus,

E≥i+1 = E[E[X≥i+1 | X≥i]] = E[E[X≥i − Xi | X≥i]] = E[X≥i − E[Xi | X≥i]].

It is easily seen that E[Xi | X≥i] ≥ 1
2

X≥i
2k+1 since at least half of the vertices of X≥i got an auxiliary

colour by the above algorithm. Moreover each of those elements that got an auxiliary colour had
probability 1

2k+1 to get the final colour i. This is the only place where we need to assume that the
adversary is oblivious and does not have access to the random bits. Thus,

E[X≥i − E[Xi | X≥i]] ≤ E[X≥i −
1

2(2k + 1)
X≥i] =

4k + 1
4k + 2

E[X≥i] ≤
(

4k + 1
4k + 2

)i

n,

by linearity of expectation and by the induction hypotheses. This completes the proof of the
lemma.

Lemma 4.5. The expected number of colours used by the algorithm is at most log 4k+2
4k+1

n + 1.
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Proof. Let Ii be the indicator random variable for the following event: some points are coloured
with a main colour in entry i. We are interested in the number of colours used, that is Y :=

∑∞
i=1 Ii.

Let b(k, n) = log 4k+2
4k+1

n. Then,

E[Y] = E[
∑
1≤i

Ii] ≤ E[
∑

1≤i≤b(k,n)

Ii] + E[X≥b(k,n)+1] ≤ b(k, n) + 1,

by Markov’s inequality and lemma 4.4.

We notice that:

b(k, n) =
ln n

ln 4k+2
4k+1

≤ (4k + 2) ln n = O(k log n).

We also have the following concentration result:

Pr[more than c · b(k, n) colours are used] = Pr[X≥c·b(k,n)+1 ≥ 1] ≤ E≥c·b(k,n)+1 ≤
1

nc−1 ,

by Markov’s inequality and by lemma 4.4.
This completes the performance analysis of our algorithm.

Remark. In the above description of the algorithm, all the random bits are chosen in advance
(by deciding the values of the function f in advance). However, one can be more efficient and
calculate the entry f (i) only at the first time we need to update entry i, for any i. Since at each
entry we need to use O(log k) random bits and we showed that the number of entries used is
O(k log n) with high probability then the total number of random bits used by our algorithm is
O(k log k log n) with high probability.

5. Deterministic online algorithms with recolouring

In this section, we relax the requirement that an online algorithm has to commit to the colour
of every point, by allowing the algorithm to recolour a “few” of the points that have appeared
in the past. Our goal is to find deterministic online algorithms that use a logarithmic number
of colours and perform a total number of recolorings which is linear in n. We manage to find
such algorithms with respect to intervals and halfplanes. The algorithm for halfplanes relies on
an algorithm that colours points on a disk with respect to circular arcs, where the adversary can
additionally ask the algorithm to substitute a set of consecutive points on the disk with a single
point (we call this a substitution move). As always, the colouring must remain conflict-free at all
times.

5.1. An O(log n) colours algorithm for intervals
We consider the problem of conflict-free colouring a set of points on a line (that are revealed in
an online fashion) and the conflict-free property has to hold at any given time for any interval.
We describe a deterministic online conflict-free colouring algorithm for this case that is allowed
to recolour just a single old point during each insertion of a new point. The algorithm is based
on the framework developed in section 3 where we use 3 auxiliary colours {a, b, c} and f is the
constant function f (l) = a, for every l. We refer to points coloured with b or c as d-points. In
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order to have only a logarithmic number of entries, we slightly modify the framework (using a
recolouring procedure) such that the number of points coloured with a in each entry of the table
is at least one third of the total points that reach that entry. To achieve this goal, our algorithm
maintains the following invariant in every level: There are at most two d-points between every
pair of points coloured with a (i.e., between every pair that are consecutively coloured a among
the a-points). Therefore, at least a third of the points at each entry get colour a, and two thirds
are deferred for colouring in a higher entry. The total number of colours is at most log3/2 n + 1.
When a new point p arrives, it is coloured according to the following algorithm, starting from
entry 1:

• If p is not adjacent to a point coloured with an auxiliary colour a then p is assigned auxiliary
colour a and gets its final colour in that entry.

• We colour point p with b or c greedily as long as it does not break the invariant that between
any two consecutive a’s we have at most two d-points.

• It remains to handle the case where the new point p has a point coloured with a on one side
and a point, say q, coloured with d on the other side, such that q has no adjacent point coloured
with a. We assign to p the auxiliary colour of q (thus it is a d-point) in the current entry and in
all higher entries for which q obtained an auxiliary colour and assign to it the main colour of
q, and we recolour q with the auxiliary colour a (and delete the corresponding appearance of
it in all higher entries of the table), and thus we recolour q with the main colour of the current
entry. At this point all points have an assignment of main colours. It is not hard to check that
when we recolour a point then we do not violate the invariants at any entry: Let ` be the entry
that caused recolouring, all entries before it remain the same, the change in the entry ` does
not break invariants, all other entries remain the same except that point p appears there instead
of point q that was there before and there are no points between p and q that appear in an entry
higher than `.

An example of a run of the recolouring algorithm is shown in figure 1 for an input permuta-
tion π = 3754612. Vertex vt (that is, the number πt) appears at time t, where t ranges from 1 to
7. The first row of the table represents the order in which points appear, the last row of the table
shows the current colouring. At every time step of the run, points whose colours were changed
(a new colour, or a recolouring) by the last insertion are marked with bold. Recolorings happen
at t = 3 for v2, at t = 5 for v3, and at t = 7 for v6.

It can be easily checked that the recolouring algorithm produces a valid conflict-free colour-
ing, because it is essentially an instance of the general framework: After every insertion (and a
possible recolouring), the point of highest entry in each interval is uniquely coloured.

Also, it can be proven that the number of recolorings is at most n − (blog2 nc + 1), and this is
tight.

Proposition 5.1. The number of recolorings in the above algorithm equals

n − (blog2 nc + 1)

in the worst case.

Proof. An input with n vertices uses at least blog2 nc + 1 colours (see, for example, optimal
offline colouring of points with respect to intervals in [3]). Whenever a new colour is introduced
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· · v1 · · · ·

1 a
2
3

· · 1 · · · ·

· · v1 · · · v2

1 a d
2 a
3

· · 1 · · · 2

· · v1 · v3 · v2

1 a d a
2 a
3

· · 1 · 2 · 1

· · v1 v4 v3 · v2

1 a d d a
2 d a
3 a

· · 1 3 2 · 1

· · v1 v4 v3 v5 v2

1 a d a d a
2 d a
3 a

· · 1 3 1 2 1

v6 · v1 v4 v3 v5 v2

1 d a d a d a
2 a d a
3 a

2 · 1 3 1 2 1

v6 v7 v1 v4 v3 v5 v2

1 a d a d a d a
2 a d a
3 a

1 2 1 3 1 2 1

Figure 1. An example of a run of the recolouring algorithm

during the run of the algorithm, there is no recolouring. Thus, there are at most n− (blog2 nc+ 1)
recolorings, because in every other insertion at most one old point is recoloured.

Now, we are going to show a family of instances for which the above algorithm performs
exactly n − (blog2 nc + 1) recolorings. We use the relative positions notation for the input, that
was introduced in [2, 3]. We explain this notation briefly: Each input of n requests of points is
denoted by a sequence σ of n natural numbers, so that the t-th element of the sequence, i.e., σt,
is a natural number in [0, t−1], and the point requested at time t has exactly σt already requested
points to the left of it.

We define, for k ≥ 1, an instance σk of length n = 2k − 1 for which our recolouring algorithm
uses k colours and does 2k − k − 1 recolorings. The instance σ1 = 0. For k ≥ 1, the instance σk+1

is defined recursively:

σk+1 = σk ◦ (2k − 1, . . . , 2k − 1)︸                  ︷︷                  ︸
2k times

,

where ‘◦’ is the concatenation operation for finite sequences. Since, for every k, σk is a prefix of
σk+1, we have in fact provided an unbounded length relative positions input

σ = 20 − 1︸︷︷︸
20

, 21 − 1, 21 − 1︸          ︷︷          ︸
21

, 22 − 1, . . . , 22 − 1︸                ︷︷                ︸
22

, . . . , 2k − 1, . . . , 2k − 1︸                ︷︷                ︸
2k

, . . .

or

σ = 0, 1, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, . . .

The following can be proven by induction and we omit the easy but tedious details. For each
σk, the recolouring algorithm produces the colouring Ck, defined recursively as C1 = 1 and
Ck = Ck−1 ◦ (k) ◦ Ck−1, for k > 1. Therefore, for t < 2k, input σ is using at most k colours.
The point inserted at t = 2k, which is the first point of σk+1 (or σ) that is inserted at relative
position 2k −1, is coloured with a new colour k + 1, and therefore no recolouring happens. For all
subsequent 2k−1 points inserted at relative position 2k−1, there is a recolouring by the algorithm.
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Therefore, for all points, except the ones inserted at t = 1, 2, 4, . . . , 2k, . . . a recolouring happens,
and therefore after n insertions, n − (blog2 nc + 1) recolorings happen in σ.

For example, the run of the recolouring algorithm on input σ3 is shown in figure 2, where
recolorings are shown with bold. The first row of the table represents the order in which points
appear and the last row of the table shows the current colouring. Recolorings happen at t = 3, 5,
6, 7.

v1 · · · · · ·

1 a
2
3

1 · · · · · ·

v1 · v2 · · · ·

1 a d
2 a
3

1 · 2 · · · ·

v1 v3 v2 · · · ·

1 a d a
2 a
3

1 2 1 · · · ·

v1 v3 v2 · · · v4

1 a d a d
2 a d
3 a

1 2 1 · · · 3

v1 v3 v2 · · v5 v4

1 a d a d a
2 a d
3 a

1 2 1 · · 3 1

v1 v3 v2 · v6 v5 v4

1 a d a d d a
2 a d a
3 a

1 2 1 · 3 2 1

v1 v3 v2 v7 v6 v5 v4

1 a d a d a d a
2 a d a
3 a

1 2 1 3 1 2 1

Figure 2. The run of the recolouring algorithm on input σ3

5.2. An O(log n) colours algorithm for circular arcs
We define a hypergraph H closely related to the one induced by intervals: The vertex set of H
is represented as a finite set P of n distinct points on a circle C and its hyperedge set consists
of all intersections of the points with some circular arc of C. In the static case, it is not difficult
to show that n points can be optimally conflict-free coloured with respect to circular arcs with
blog2(n − 1)c + 2 colours: There must be a point p with unique colour in P, and therefore all
circular arcs that include p have the conflict-free property; the remaining n − 1 points of P \ {p}
and the remaining circular arcs induce the same hypergraph as the set of intervals on n−1 points,
which is optimally coloured with blog2(n − 1)c + 1 more colours.

Here, we are interested in an online setting, where the set P ⊂ C is revealed incrementally by an
adversary, and, as usual, the algorithm has to commit to a colour for each point without knowing
how future points will be requested. Algorithms for intervals can be used almost verbatim for
circular arcs. In fact, the recolouring algorithm for intervals, given in section 5.1, can be used
verbatim, if the notion of adjacency of points is adapted to the closed curve setting (for n ≥ 3,
each point has exactly two immediate neighbouring points, whereas in the intervals case, the two
extreme points have only one neighbour). Again, in each entry `, at least a third of the points is
assigned auxiliary colour a, and thus at most log3/2 n + 1 colours are used.
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5.3. An O(log n) colours algorithm for circular arcs with substitution of points
We consider a variation on the problem of online conflict-free colouring with respect to circular
arcs that was given in section 5.2. In this new variation, the adversary has, in addition to the
insertion move of a new point, a substitution move:

Definition (substitution move). The adversary can substitute a set Q of already requested
points, that are consecutive on the circle, with a single new point p, and the algorithm has to
colour p, such that the whole set of points is conflict-free coloured with respect to circular arcs
(in that new set, p is included, but all points in Q are removed).

Our algorithm for this variation of the problem relies on the one given in section 5.2. For an
insertion move of the adversary, it colours the new point like in section 5.2. For a substitution
move of the adversary, it colours the new point p, with the highest colour occurring in the points
of Q. Point p also gets the entries of the unique point q ∈ Q with the highest colour. It is
not difficult to see that the colouring remains conflict-free after each move. We remark that a
recolouring can happen only in an insertion move and that substitution moves do not make the
algorithm introduce new colours. The following is true for every t:

Lemma 5.2. After t moves, the above colouring algorithm uses at most log3/2 t + 1 colours.

Proof. During a substitution move we might break the invariant that between any pair of con-
secutive a’s there are at most two d-points. However if in each entry we denote by ā a point
formerly coloured with a which was substituted, then it can be proven that between any two
consecutive points coloured with a or ā, there are at most two d-points and thus it implies that
at least one third of the points in every level are coloured either by that level or have been sub-
stituted. We call these points coloured with ā ghost points. Moreover, we assign ghost points to
substitution points as follows. If a point p substitutes a point p′ coloured with a, p′ becomes a
ghost point and p is assigned the ghost point p′. If a point p substitutes a point q which has some
ghost points, p is assigned all ghost points of q. We ignore the trivial substitution of one point
coloured with a and do not create a ghost point and any assignment in this case. It is not difficult
to see that at any time instance t each ghost point is assigned to exactly one non-ghost point.

We intend to make the above argument formal as follows. We will prove the stronger result
that the number of colours used by the algorithm is at most log3/2 i + 1, where i is the number of
insertion moves until time t. In order to prove the previous statement it is enough to show that at
each entry `, the number of points getting auxiliary colour d in entry ` is bounded by the number
of insertion moves that reached entry ` as follows.

d` ≤
⌊ 2

3 i`
⌋

(5.1)

where d` is the number of points getting auxiliary colour d in entry ` and i` is the number of
insertion moves that reached entry `. The above inequality is true when no points have reached
entry `. Moreover, it remains true as long as a substitution move happens, or an insertion move
happens in which the point at entry ` is coloured with a. The number of d’s increases only if
there is an insertion move where the point at level ` is coloured with d. We will study further this
last case. For a new point p to get auxiliary colour d it must be the case that it is inserted next to
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a point coloured with a and a point q coloured with d such that q is adjacent to a point coloured
with a. In a fixed entry `, we call a maximal set of consecutive points coloured with d a strip. The
length of a strip s is the number of d’s in it and is denoted by len(s). It is not difficult to see that
if there is at least one a in entry `, as in our case, the number of strips is the same as the number
of a’s.

The number of insertion moves that reach entry ` satisfies the following equation.

i` ≥ a` + d` + ā` (5.2)

where a` is the number of points coloured with a, and ā` the number of ghost points (points sub-
stituted that were coloured with a). We have an inequality, because we omit the points substituted
that were coloured with d. If a strip s has length len(s) > 2, it necessarily contains ghost points.
In fact if a strip s has length len(s), one can prove that points in it have been assigned at least⌈ 1

2 len(s)
⌉
− 1 ghost points. We defer the proof of the above fact to lemma 5.3. Because of all the

above, inequality (5.2) implies the following.

i` ≥ a` +
∑

s : strip

len(s) +
∑

s : strip

(⌈ 1
2 len(s)

⌉
− 1

)
=

∑
s : strip

⌈ 3
2 len(s)

⌉
The above inequality implies⌊ 2

3 i`
⌋
≥

⌊
2
3

∑
s : strip

d 3
2 len(s)e

⌋
≥

⌊ ∑
s : strip

len(s)
⌋

=
∑

s : strip

len(s) = d`

which is inequality (5.1).

Lemma 5.3. The points in a strip s have been assigned at least
⌈ 1

2 len(s)
⌉
− 1 ghost points.

Proof. We prove the above fact by induction on t. For t = 0 it is trivially true. For length of a
strip at most two, again it is trivially true because

⌈ 1
2 len(s)

⌉
−1 = 0. We ignore trivial substitutions

of one point coloured with a because they do not change the lengths of the strips and do not create
ghost points. Assume there is a strip of length greater than two. Necessarily, the last action in the
strip was a substitution move, because in an insertion the algorithm never colours with d, if there
are already two d points in the strip. There are two possible cases for a substitution move.

In the first case, there is a substitution of only d-points as shown below, i.e., the substitution is
completely contained in one strip, say of length L′, and the new strip created has length L ≤ L′.

L′︷                        ︸︸                        ︷
dddd dddd. . .ddddd︸            ︷︷            ︸

substitution

dd

In this case, the number of ghost points in the new strip is the same as the number of ghost points
in the old strip, which is, by the inductive hypothesis, at least

⌈ 1
2 L′

⌉
−1, which is at least

⌈ 1
2 L

⌉
−1.

In the second case, the substitution spans more than one strip, i.e., also some (non-ghost)
points coloured with a. Say that the substitution spans k a’s which are surrounded by k + 1 strips
of lengths L1, . . . , Lk+1, as shown below.

L1︷   ︸︸   ︷
dddddd a

L2︷ ︸︸ ︷
ddddd a. . .a

Lk︷ ︸︸ ︷
ddddd a︸                       ︷︷                       ︸

substitution

Lk+1︷︸︸︷
dddd
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The length of the new strip is L ≤ L1 + Lk+1 + 1 if k ≥ 2, and L ≤ L1 + L2 if k = 1 (this last
inequality is true because there can be no trivial substitution). In this case, the number of ghost
points in the new strip is the same as the number of ghost points in the k + 1 strips plus k, which
is at least

k+1∑
i=1

(⌈ 1
2 Li

⌉
− 1

)
+ k ≥

⌈
1
2

k+1∑
i=1

Li

⌉
− 1 ≥

⌈ 1
2 L

⌉
− 1.

In the above, we used the inductive hypothesis for each of the k + 1 strips.

5.4. An O(log n) colours algorithm for halfplanes
In this section we describe a deterministic algorithm for online conflict-free colouring points with
respect to halfplanes that uses O(log n) colours and performs O(n) recolorings. Thus, it can also
be modified for conflict-free colouring points in the plane with respect to unit disks as described
in section 6 (see proof of corollary 6.3). At every time instance t, the algorithm maintains the
following invariant (Vt is the set of points that have appeared so far).

Invariant. All points (strictly) inside the convex hull of Vt are coloured with the same special
colour, say ‘?’. The set of points on the convex hull of Vt, denoted by CH(Vt), are coloured with
another set of colours, such that every set of consecutive points on the convex hull has a point
with a unique colour.

Every non-empty subset of points of Vt induced by a halfplane contains a set of consecutive
points on the convex hull of Vt, and thus the whole colouring is conflict-free. If one considers
the points of CH(Vt) in their circular order on the convex hull, it is enough to conflict-free colour
them with respect to circular arcs. The number of colours used in CH(Vt) must be logarithmic in
t.

We describe how the algorithm maintains the above invariant. A new point vt+1 that appears
at time t + 1 is coloured as follows: If it is inside the convex hull of Vt, then it gets colour ‘?’.
Otherwise, the new point vt+1 will be on CH(Vt+1), in which case we essentially use the algorithm
of section 5.3 to colour it. We have two cases, which correspond to a substitution and an insertion
move, respectively:

• It might be the case that vt+1 forces some points (say they comprise set Q) that were in CH(Vt)
to appear in the interior of CH(Vt+1), so in order to maintain the invariant, all points in Q are
recoloured to ‘?’, and vt+1 is coloured with the maximum colour occurring in Q (this is like a
substitution move of section 5.3).

• If, on the other hand, no points of CH(Vt) are forced into the convex hull, then point vt+1 ∈

CH(Vt+1) is coloured like in an insertion move of section 5.3, with the algorithm for circular
arcs. In that last case, in order to maintain logarithmic number of colours on t, one recolouring
of a point in CH(Vt+1) might be needed.

The total number of recolorings is guaranteed to be O(n), because for every insertion, at most
one recolouring happens on the new convex hull, and every point coloured with ‘?’ keeps that
colour for the rest of the algorithm run.
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6. Application to geometry

Our randomised algorithm has applications to conflict-free colourings of certain geometric hy-
pergraphs studied in [7, 8, 9]. We obtain the same asymptotic result as in [7, 8, 9] but with a
better constant of proportionality and using much fewer random bits. For example, if the hyper-
graph H is induced by intervals, it can be proven (with an analysis similar to the one given in
section 4) that for any order of insertion of n points, when the auxiliary colour for each entry is
chosen uniformly at random from {a, b, c}, the expected number of colours used is bounded by
log3/2 n + 1. It is interesting that the best known upper bound for dynamically colouring n points
deterministically, when the whole insertion order is known in advance, is also log3/2 n + 1 (see,
for example, [3] for further details). In our algorithm the expected number of colours is bounded
by 1 + log3/2 n ≈ 1.71 log2 n, whereas in [7, 8] by 1 + log8/7 n ≈ 5.19 log2 n, three times our
bound. In the following, we provide a run example for the algorithm on intervals.

Example. Consider the case where the hypergraph is induced by points with respect to inter-
vals. Namely, V = {1, . . . , n} and E consists of all possible discrete intervals of V (i.e., sub-
sets of consecutive integers). Vertices appear one by one and at each time t we must have an
online conflict-free colouring with respect to the discrete interval subsets of the t points re-
vealed by time t. It is not difficult to see that the hypergraphs H(V i

t ) can always be properly
non-monochromatically online 3-coloured (say with auxiliary colours a, b, c) as follows: Each
newly inserted point has at most two immediate neighbours and thus even a first-fit colouring
suffices. In figure 3, we exhibit a run of the algorithm for the permutation π = 253164, seen as a
mapping from time t ∈ {1, . . . , 6} to the corresponding vertex at position π(t).

i f (i) · v1 · · · ·

1 b a
2 a a
3
4
5
6

· 2 · · · ·

i f (i) · v1 · · v2 ·

1 b a b
2 a a
3
4
5
6

· 2 · · 1 ·

i f (i) · v1 v3 · v2 ·

1 b a c b
2 a a b
3 c a
4 a a
5
6

· 2 4 · 1 ·

i f (i) v4 v1 v3 · v2 ·

1 b b a c b
2 a a b
3 c a
4 a a
5
6

1 2 4 · 1 ·

i f (i) v4 v1 v3 · v2 v5

1 b b a c b a
2 a a b a
3 c a
4 a a
5
6

1 2 4 · 1 2

i f (i) v4 v1 v3 v6 v2 v5

1 b b a c a b a
2 a a b c a
3 c a b
4 a a b
5 b a
6 a a

1 2 4 6 1 2

Figure 3. A run example of the framework for hypergraphs induced by points with respect to intervals
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In the end the vertices look like π−1 = v4v1v3v6v2v5, where vt is the vertex appearing at time
t. The choices are f (1) = b, f (2) = a, f (3) = c, f (4) = a, f (5) = b, f (6) = a. The six tables
correspond to t = 1, . . . , 6 and at the bottom of each table the online conflict-free colouring, so
far, is shown. Entries correspond to rows in the tables, where for each entry i the following data
is given: the representing colour f (i) and the proper non-monochromatic auxiliary colouring of
the vertices in the hypergraph V i

t with three colours a, b or c.
Observe that entries 3 and 5, respectively, do not have a vertex coloured with f (3) and f (5),

respectively. As a consequence colours 3, 5 do not appear in the conflict-free colouring although
colours 1, 2, 4, 6 do. If it is important to use consecutive colours, namely k different colours
implies they are {1, . . . , k}, the above problem can be fixed by assigning the next unused conflict-
free colour to an entry i only as soon as a vertex in entry i is coloured with auxiliary colour f (i).
The above remedy works in our general framework, not only in the specific case of this example.

Halfplanes and unit disks. When H is the hypergraph obtained by points in the plane inter-
sected by halfplanes or unit disks, we obtain online randomised algorithms that use O(log n)
colours with high probability. Before proceeding it is necessary to prove a degeneracy result
about hypergraphs induced by halfplanes.

Lemma 6.1. Let V be a finite set of n points in the plane and let E be all subsets of V that can
be obtained by intersecting V with a halfplane. Then the hypergraph H = (V, E) is 3-degenerate.

Proof. We assume that points are in general position, i.e., no three of them are on the same
line. We also assume that points are inserted in some order v1, v2, . . . , vn. Following the notation
in the definition of a degenerate hypergraph on page 4, it is enough to prove that for every t, we
have

S t ≤ 3t (6.1)

(we remark that we have dropped the permutation π, appearing in inequality (2.1) on page 5, be-
cause it is implied by the order v1, v2, . . . , vn). We prove something stronger than inequality (6.1),
namely that

S t + Ct ≤ 3t, (6.2)

by induction, where Ct is the number of points on the boundary of the convex hull at time t,
which is always a positive number. It will be helpful to define the following differences:

∆S t = S t − S t−1,

∆Ct = Ct −Ct−1.

The difference ∆S t is exactly the number of neighbours of vt in the Delaunay graph at time t, that
is, G(H({v1, . . . , vt})). For vt to be a neighbour of vt′ , with t′ < t, in this Delaunay graph, there
must exist a halfplane at time t which contains exactly vt and vt′ .

First, we show that inequality (6.2) is true for small values of t. For t ∈ {1, 2, 3}, inequality (6.2)
is true as exhibited in table 1, because the size of the convex hull is the same as the number of
points and every two points are neighbours in the Delaunay graph.
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Table 1. Edges in Delaunay graph for halfplanes and size of convex hull for small values of t

t 1 2 3

S t 0 1 3
Ct 1 2 3

S t + Ct 1 3 6

Then, for the inductive step, for t > 3, it is enough to prove that

∆S t + ∆Ct ≤ 3, (6.3)

because then the sum S t + Ct increases at most by 3 at every time step and therefore always
remains bounded by 3t. Denote the convex hull of points {v1, . . . , vt} with CHt. Consider the
following two cases. Either vt lies outside of the convex hull CHt−1 or vt is inside the convex hull
CHt−1.

Assume vt lies outside of the convex hull CHt−1 (see figure 4). Then vt lies on the boundary of

vt

CHt−1

vt

CHt

Figure 4. The new point is outside the old convex hull

the convex hull CHt. Consider the two points u and w that are the neighbours of vt in the cyclic
order of points on the convex hull CHt (see figure 5). Consider the line ` passing through u and

vt

u

w

`

v′

v′′

Figure 5. Delaunay graph neighbours of a new point outside the old convex hull

w. This line partitions points of CHt−1 in two types: (a) points on ` or in the same halfplane as
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vt defined by ` (points like u, v′, w in figure 5) and (b) points on the other halfplane defined by
` (points like v′′ in figure 5). Vertex vt is adjacent to every vertex v′ of type (a) (including u,
w) in the Delaunay graph, because one can take a halfplane with defining line passing through
v′ and slope between the slopes of the incident sides to v′ of the convex hull CHt−1, and this
halfplane contains only vt and v′. On the other hand, no vertex v′′ of type (b) is a neighbour in
the Delaunay graph with vt, because every halfplane that contains vt and v′′ must contain at least
one of u, w. Assume there are d vertices of CHt−1 of type (a), with d ≥ 2. Then, ∆S t = d and
d−2 of them no longer appear on the convex hull, but vt appears on CHt, i.e., ∆Ct = −(d−2)+1.
Therefore, we have proved that when vt lies outside CHt−1, ∆S t + ∆Ct = d + (−(d − 2) + 1) = 3,
i.e., inequality (6.3) is true.

Assume vt is inside the convex hull CHt−1 (see figure 6). Then, consider any triangulation of
CHt−1. Point vt is in exactly one triangle of the triangulation, call it xyz, where x, y, z are points

vt

CHt−1 = CHt

z

x y

Figure 6. A triangulation of the convex hull in case the new point is inside the old convex hull

on the convex hull, corresponding to points inserted before vt. It is not difficult to prove that
every halfplane that contains vt, contains at least one of x, y, z. Therefore vt can have at most
three neighbours in the Delaunay graph. The three neighbours case can be realised when the
only points on the convex hull are x, y, z, i.e., when t = 4, by taking for every point p ∈ {x, y, z}
a halfplane that contains p, and the defining line of the halfplane (a) is passing through vt and
(b) is parallel to the line passing through the other two points in {x, y, z}. If there are more than
three points in CHt−1, we will prove that it is not possible for vt to have all three neighbours
x, y, z in the Delaunay graph. Assume for the sake of contradiction that there is a halfplane hx

containing only vt and x, a halfplane hy containing only vt and y, and a halfplane hz containing
only vt and z. For every point p ∈ {x, y, z} define the halfline starting at vt with direction −−→pvt, i.e.,
not containing p. These halflines are shown in figure 7. These three halflines partition the plane
into three areas, Ax, Ay, Az, each one containing one of the points x, y, z, respectively. We now
consider halfplanes containing at least vt. It is not difficult to see that such a halfplane containing
only x and not y or z must contain all of Ax. Similarly, such a halfplane containing only y and not
x or z must contain all of Ay, and such a halfplane containing only z and not x or y must contain
all of Az. Therefore, any other point contained in CHt−1 except x, y, z must be contained in one of
hx, hy, and hz, which is a contradiction. Thus, we have proved that when vt is in CHt−1, ∆S t ≤ 3
and ∆Ct = 0, i.e., inequality (6.3) is true.

Corollary 6.2. Let H be a hypergraph induced by points and halfplanes, as in lemma 6.1. Then,
the expected number of colours used by our randomised online conflict-free colouring algorithm
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Figure 7. A partition of the plane

applied to H is at most log14/13 n + 1, in the oblivious adversary model. Also the actual number
of colours used is O(log14/13 n) with high probability. The number of random bits is O(log n) with
high probability.

Proof. The proof follows from theorem 4.1 and lemmata 4.5, 6.1.

Corollary 6.3. Let V be a set of n points in the plane and let E be the set of all subsets of V
that can be obtained by intersecting V with a unit disk. Then, there exists a randomised online
algorithm for conflict-free colouring H which uses O(log n) colours and O(log n) random bits
with high probability, against an oblivious adversary.

Proof. In [9], it was observed that by an appropriate partitioning of the plane one can modify
any online algorithm for conflict-free colouring points with respect to halfplanes to an online
algorithm for conflict-free colouring points with respect to congruent disks. The congruent disks
algorithm uses a constant multiple of the colours used by the halfplanes algorithm. Using the
same technique as developed in [9] and corollary 6.2 we obtain the desired result.

7. Discussion and open problems

We presented a framework for online conflict-free colouring any hypergraph. This framework
coincides with some known algorithms in the literature when restricted to some special under-
lying hypergraphs. We derived a randomised online algorithm for conflict-free colouring any
hypergraph (in the oblivious adversary model) and showed that the performance of our algo-
rithm depends on a parameter which we refer to as the degeneracy of the hypergraph which is a
generalisation of the known notion of degeneracy in graphs (i.e., when the hypergraph is a simple
graph then our notion is similar to the classical definition of degeneracy of a graph). Specifically,
if the hypergraph is k-degenerate then our algorithm uses O(k log n) colours with high probabil-
ity, which is asymptotically optimal for any constant k, and O(k log k log n) random bits. This
is the first efficient online conflict-free colouring for general hypergraphs and subsumes all the
previous randomised algorithmic results of [8, 9]. It also substantially improves the efficiency
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with respect to the amount of randomness used in the special cases studied in [8, 9]. Another
interesting fact to note is that our algorithm when applied to k-inductive graphs gives an online
colouring of such graphs with O(k log n) colours with high probability. In [15], it was shown that
the same bound can be achieved deterministically by the first-fit greedy algorithm.

A major open problem is to find an efficient online deterministic algorithm for conflict-free
colouring k-degenerate hypergraphs. Even for the very special case of a hypergraph induced by
points and intervals (as in the example in section 6), where the number of neighbours of the
Delaunay graph of every induced hypergraph is at most two, the best known deterministic online
conflict-free colouring algorithm from [8] uses Θ(log2 n) colours. We hope that our technique
together with a possible clever derandomisation technique can shed light on this problem.

As mentioned already, the framework of section 3 can describe some known algorithms such
as the unique maximum greedy algorithm of [8] for online conflict-free colouring points on a
line with respect to intervals. No sharp asymptotic bounds are know for the performance of
unique maximum greedy, in terms of the number of colours it uses. The best known upper bound
is linear (asymptotically n/2 from [2, 3]), whereas the best known lower bound is Ω(

√
n). We

believe that this new description of unique maximum greedy with the help of the framework
could help analyse its performance.

In section 5 we initiate the study of online conflict-free colouring with recolouring: We provide
a deterministic online conflict-free colouring for points on the real line with respect to intervals
and show that our algorithm uses Θ(log n) colours and at most one recolouring per insertion.
This is in contrast with the best known deterministic online conflict-free colouring with respect
to intervals that uses Θ(log2 n) colours in the worst case without recolouring, by [8]. We also
present deterministic online algorithms for conflict-free colouring points with respect to circular
arcs and halfplanes (and unit disks) that use O(log n) colours and O(n) recolorings in the worst
case. In the special case of intervals or circular arcs at most one point is recoloured per insertion.

It would be interesting to find a deterministic online conflict-free colouring algorithm for
points in the plane with respect to halfplanes that uses Θ(log n) colours in the worst case and
recolours at most a constant number of points per insertion. We leave this as an open problem for
further research.

All of our randomised algorithms assume the oblivious adversary model, in which the adver-
sary has to commit to a specific input sequence before revealing the first vertex to the algorithm
without knowing the random bits that the algorithm is going to use. The randomised model can
be seen as a relaxation of the strict deterministic model: some power is taken from the adver-
sary, or equivalently given to the algorithm, in order to achieve just a logarithmic number of
colours. Another such relaxation is to give extra information to the algorithm about where each
requested point will end up in the final colouring (the absolute positions model, which was in-
troduced in [2, 3]). Other such relaxations are given in [2, 3] (colouring with respect to rays) and
[19] (online ranking of paths). In this work we introduced yet another relaxation, the recolouring
model, in which the algorithm is allowed to recolour some of the points. An interesting ques-
tion is to construct O(log n) colours algorithms that rely as little as possible on their extra power
(as few random bits as possible, as few recolorings as possible). Towards that goal, in a unified
framework, we provided the best known results: randomised algorithms that use an expected log-
arithmic number of random bits, and recolouring algorithms that perform at most a linear number
of recolorings.
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[8] Chen, K., Fiat, A., Kaplan, H., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky,

S., Wagner, U. and Welzl, E. (2007) Online conflict-free coloring for intervals. SIAM Journal on
Computing 36(5) 1342–1359.

[9] Chen, K., Kaplan, H. and Sharir, M. (2009) Online conflict free coloring for halfplanes, congruent
disks, and axis-parallel rectangles. ACM Transactions on Algorithms 5(2) 16:1–16:24.

[10] Elbassioni, K. and Mustafa, N. H. (2006) Conflict-free colorings of rectangles ranges. In Proceedings
of the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS), pages
254–263.

[11] Even, G., Lotker, Z., Ron, D. and Smorodinsky, S. (2003) Conflict-free colorings of simple geometric
regions with applications to frequency assignment in cellular networks. SIAM Journal on Computing
33 94–136.
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