
Ordered coloring of grids and related graphsI

Amotz Bar-Noya,b,1, Panagiotis Cheilaris∗,c,d,2, Michael Lampisb, Valia Mitsoub, Stathis Zachosa,b,c

aBrooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn NY 11210 USA
bGraduate Center, City University of New York, 365 5th Avenue, New York NY 10016 USA

cNational Technical University of Athens, School of Electrical and Computer Engineering, Zografou 15780 Greece
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Abstract

We investigate a coloring problem, called ordered coloring, in grids and some other families of grid-like graphs.
Ordered coloring (also known as vertex ranking) is related to conflict-free coloring and other traditional coloring
problems. Such coloring problems can model (among others) efficient frequency assignments in cellular networks.
Our main technical results improve upper and lower bounds for the ordered chromatic number of grids and related
graphs. To the best of our knowledge, this is the first attempt to calculate exactly the ordered chromatic number of
these graph families.
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1. Introduction

A (simple) graph is a pair G = (V, E), where V (the vertex set) is a finite set and E (the edge set) is a family of
two-element sets of V . A simple path of graph G is a sequence of distinct vertices of G such that adjacent vertices in
the sequence are connected with an edge of G. The notion of ordered coloring is defined as follows.

Definition 1. An ordered coloring of graph G = (V, E) with k colors is a function C : V → {1, . . . , k} such that for
each simple path p in G the maximum color assigned to vertices of p occurs in exactly one vertex of p. The ordered
chromatic number of a graph G, denoted by χo(G), is the minimum k for which G has an ordered coloring with k
colors.

In this paper we focus on the problem of computing ordered colorings (also known as vertex rankings) for grids
and related graphs, with as few colors as possible.

The problem of computing ordered colorings is a well-known and widely studied problem (see for example [1])
with many applications including VLSI design [2] and parallel Cholesky factorization of matrices [3]. The problem
is also interesting for the Operations Research community, because it has applications in planning efficient assembly
of products in manufacturing systems [4]. In general, it seems that the ordered coloring problem can model situations
where interrelated tasks have to be accomplished fast in parallel (assembly from parts, parallel query optimization in
databases, etc.)

Another motivation for the study of ordered colorings comes from more recent research into an area of coloring
problems inspired by wireless mobile networks, called conflict-free colorings. Conflict-free colorings were introduced
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and first studied in [5, 6]. Conflict-free coloring models frequency assignment for cellular networks. A cellular
network consists of two kinds of nodes: base stations and mobile agents or devices. Base stations have fixed positions
and provide the backbone of the network; they are modeled by vertices in V . Mobile agents are the clients of the
network and they are served by base stations. This is done as follows: Every base station has a fixed frequency; this is
modeled by the coloring C, i.e., colors represent frequencies. If an agent wants to establish a link with a base station
it has to tune itself to this base station’s frequency. Since agents are mobile, they can be in the range of many different
base stations. To avoid interference, the system must assign frequencies to base stations in the following way: For
any range, there must be a base station in the range with a frequency that is not reused by some other base station
in the range. One can solve the problem by assigning n different frequencies to the n base stations. However, using
many frequencies is expensive, and therefore, a scheme that reuses frequencies, where possible, and thus minimizes
the number of frequencies used, is preferable. Conflict-free coloring problems have been the subject of many recent
papers due to their practical and theoretical interest (see for example [7, 8, 9, 10, 11]).

In the case where the ranges of the mobile agents are modeled by paths of a graph, the conflict-free coloring
problem is closely related to the ordered coloring problem. Ordered colorings are unique-maximum conflict-free
colorings with respect to paths of a graph. In fact, many approaches in the conflict-free coloring literature use unique-
maximum colorings, because unique-maximum colorings are easier to argue about in proofs, due to their additional
structure. Another advantage of unique-maximum colorings is the simplicity of computing the unique color in any
range (it is always the maximum color), given a unique-maximum coloring, which can be helpful if very simple
mobile devices are used by the agents. In addition, the topologies we study in this paper are of special interest in
this setting because they can model frequency assignment in a Manhattan-like environment, where base stations are
approximately placed on a regular grid and this gives us additional motivation to calculate the exact ordered chromatic
number of grid-like graphs.

In general graphs, finding the exact ordered chromatic number of a graph is NP-complete [12, 13] and there is
an O(log2 n) polynomial time approximation algorithm [14], where n is the number of vertices. Since the problem
is generally hard, it makes sense to study specific graph topologies and the focus of this paper is the calculation of
the ordered coloring number of several grid-like families of graphs. Our main focus are grid graphs, which can be
formally defined as follows.

Definition 2. An m1 ×m2 grid, denoted by Gm1,m2 , is a graph with vertex set {0, . . . ,m1 −1} × {0, . . . ,m2 −1} and edge
set

{
{(x1, y1), (x2, y2)} | |x1 − x2| + |y1 − y2| ≤ 1

}
.

When m1 = m2 = m, we have a square grid, denoted by Gm. In a standard drawing of the grid graph, vertex (x, y)
is drawn at point (x, y) in the plane; vertices with the same x are said to be in the same column and ones with the same
y to be in the same row. A chain (or path) graph with n vertices is denoted by Pn and a ring (or cycle) graph with n
vertices is denoted by Cn. The grid Gm1,m2 can also be defined as the Cartesian product of two paths Pm1 × Pm2 .

It is known from [1] that for general planar graphs the ordered chromatic number is O(
√

n). Grid graphs are planar
and therefore the O(

√
n) bound applies. One might expect that, since the graph families we study have a relatively

simple and regular structure, it should be easy to calculate their ordered chromatic numbers. This is why it is rather
striking that, even though it is not hard to show upper and lower bounds that are only a small constant multiplicative
factor apart, the exact value of these ordered chromatic numbers is not known. The main contribution of this paper is
to further improve on these upper and lower bounds and to the best of our knowledge this is the first such attempt.

Paper organization. In the rest of this section we provide the necessary definitions and some preliminary known
results that will prove useful in the remainder. In section 2 we present our results improving the known upper bounds
on the ordered chromatic number of grids, tori and related graphs, while in section 3 we show lower bounds for square
grids and tori. Some discussion and open problems are presented in section 4.

1.1. Preliminaries
First, let us remark that definition 1 is not the typical definition of ordered coloring found in the literature. Instead,

the following definition is more standard.

Definition 3. An ordered k-coloring of a graph G = (V, E) is a function C : V → {1, . . . , k} such that for every pair
of distinct vertices v, v′, and every path p from v to v′, if C(v) = C(v′), there is an internal vertex v′′ of p such that
C(v) < C(v′′).
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It is not hard to show that the two definitions are equivalent (see for example [1]). We prefer to use definition 1
because it is closer to the definition of conflict-free colorings. Conflict-free coloring can be seen as a relaxation of
ordered coloring, because in a conflict-free coloring, in every path there must be a uniquely colored vertex, but its
color does not necessarily need to be the maximum occurring in the path.

A standard concept in graph theory, that will prove useful in the remainder (especially for proving lower bounds),
is that of a graph minor.

Definition 4. A graph X is a minor of Y , denoted as X 4 Y , if X can be obtained from Y by a sequence of the
following operations: vertex deletion, edge deletion, and edge contraction. Edge contraction is the process of merging
both endpoints of an edge into a new vertex, which is connected to all vertices adjacent to the two endpoints.

It is known that the ordered chromatic number is monotone with respect to minors (see for example [15], lemma 4.3).

Proposition 5. If X 4 Y, then χo(X) ≤ χo(Y).

A similar concept, which is also standard in graph theory, is that of a topological minor.

Definition 6. A graph X is a topological minor of Y if X can be obtained from Y by a sequence of the following
operations: vertex deletion, edge deletion, and vertex smoothing. Vertex smoothing is the process of deleting a vertex
v with exactly two adjacent vertices u and w, deleting its incident edges vu and vw, and adding the edge uw (if it does
not exist).

It is known that a topological minor is also a minor (but not necessarily vice versa). Moreover, the subgraph
relation is contained in the minor and topological minor relations, and thus (from proposition 5) the ordered chromatic
number is also monotone with respect to subgraphs.

If v is a vertex of graph G = (V, E), we denote by G − v the graph resulting from deleting vertex v from G (and all
edges incident to v). We use the notation G − S to denote the deletion of all vertices in set S ⊆ V from G.

Definition 7. A subset S ⊆ V is a separator of a connected graph G = (V, E) if G − S is disconnected or empty. A
separator S is inclusion minimal if no strict subset S ′ ⊂ S is a separator.

In the rest of this section we describe ordered colorings for some graphs with (relatively) few edges.

Chain. It is not difficult to show that an optimal ordered coloring of a chain uses the same number of colors as
an optimal conflict-free coloring of a chain. This problem is better known as conflict-free coloring with respect to
intervals from [9]. For Pn, it is known that exactly blog2 nc + 1 colors are needed, i.e., χo(Pn) = blog2 (n)c + 1. For
n = 2k − 1, the coloring is defined recursively as follows: The middle vertex v receives the maximum color k so the
two components of Pn − v (with 2k−1 − 1 vertices each) can freely use the same colors and are colored recursively.

Ring. For an ordered coloring of a ring, we rely on the above coloring of a chain. We pick an arbitrary vertex v
and color it with a unique and maximum color. The remaining vertices form a chain that we color with the method
described above. This method colors Cn, a ring of n vertices, with blog2 (n − 1)c + 2 colors and it is not difficult to
prove that this is optimal, i.e., χo(Cn) = blog2 (n − 1)c + 2.

Square grid. For an ordered coloring of the m × m grid, Gm, we can again use a recursive coloring, as we did with
the chain and the ring. We simply divide the grid in four equal grids of (almost) half side length and recursively color
them using exactly the same colors for each. To make this possible we should use unique colors in the middle row and
column, as we did for the middle vertex of the chain. So, we use m unique maximum colors for the middle row and
then at most m/2 unique colors for the middle column (the same set of at most m/2 unique colors above and under
the middle row). This method requires at most 3m colors, i.e., χo(Gm) ≤ 3m. However, this coloring remains ordered
even if we add two edges in every internal face of the standard drawing of Gm. This indicates that 3m is not optimal
and in fact, in section 2, we improve the above upper bound.

There is also a lower bound of χo(Gm) ≥ m from [1]. Another proof (in [14]) is immediate from the fact that the
treewidth and pathwidth of a graph G are at most the minimum elimination tree height (see [3] for the definition) of G.
In the following we provide a new proof, based on a minor argument, that gives a glimpse of our lower bound method
used in a following section.
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Proposition 8. For m ≥ 1, χo(Gm) ≥ m.

Proof. By induction. Base: For m = 1, it is true, as χo(G1) = 1. For the inductive step, with m > 1, consider a
Hamilton path p of Gm, which always exists. Consider an optimal ordered coloring C of Gm, i.e., one using χo(Gm)
colors. In this optimal coloring, there is a vertex v with a uniquely occurring color in p (and thus in the whole Gm).
If we restrict coloring C to graph Gm − v, we get a coloring using one color less than the coloring for Gm, which is
ordered for Gm − v. Therefore, χo(Gm − v) ≤ χo(Gm) − 1. Moreover, Gm − v contains Gm−1 as a topological minor
(and thus also as a minor), because if v = (x, y), one can start with Gm − v, and then remove all edges completely in
row y, all edges completely in column x, smooth all vertices of row y, and smooth all vertices of column x, so that the
resulting graph is a Gm−1. Thus, from proposition 5, χo(Gm − v) ≥ χo(Gm−1) and since χo(Gm) ≥ χo(Gm − v) + 1, we
get χo(Gm) ≥ χo(Gm−1) + 1 and from the inductive hypothesis, χo(Gm) ≥ (m − 1) + 1 = m.

In section 3, we improve the above lower bound. Our improvements are also relying on minor arguments like in
the proof above, but involve a careful analysis of separators in grid graphs.

2. Upper bounds

In this section we exhibit ordered colorings for several grid-like families of graphs. We are mainly interested in
the m × m (square) grid, Gm. In order to color the grid efficiently we rely on separators whose removal leaves some
subgraphs of the grid to be colored. The subgraphs we will rely on are the rhombus Rx, the wide-side triangle Tx, and
the right triangle Ox. These are depicted in figures 1, 2, and 3 and formal definitions similar to definition 2 are not
hard to infer. Another graph topology we will investigate is the torus, which is a variation of the grid with wraparound
edges added, connecting the last vertex of every row with the first vertex, and the last vertex of every column with the
first. The square torus graph Ĝm can also be defined as the Cartesian product of two cycles Cm × Cm. A summary of
our upper bound results can be seen on Table 1. It is interesting that the golden ratio φ ≈ 1.618 appears in some of
these bounds.

graph upper bound based on

Gm 2.519 m Rm,Om

Rm 1.500 m -
Tm 1.118 m Rm

Om 1.618 m Tm

Ĝm 3.500 m Rm

Table 1: Summary of upper bounds. The last column indicates on which upper bounds each result is based.

As was evident in the examples of the previous section, one strategy for constructing an ordered coloring of a
graph is to attempt to find a separator, that is, a set of vertices whose removal disconnects the graph. The vertices
of this set are all assigned distinct colors that will be the maximum colors used in the graph. This way, we can
recursively construct a coloring for the connected components that remain after the removal of the separator, such
that the same colors are used in each connected component, because paths in the original graph with endvertices in
different connected components have a unique maximum color in some vertex of the separator. The problem is then,
to find a separator that has few vertices and divides the graph into connected components of as low ordered chromatic
number as possible.

In the proofs we give below, we partition the graphs with the help of separators. All results are in the order of m,
so without further mention we do not include terms logarithmic on m. These terms might be introduced by constant
additive terms in a recursive bound. We are also omitting, in most cases, floors and ceilings, because we are interested
in asymptotic behavior. In that sense, a result like, for example, χo(Gm) ≤ 2.67m should be read as an asymptotic
upper bound of 2.67m ± o(m).

In order to find improved upper bounds we need to find more intricate separators than those of the last example
of the previous section. The idea is to use separators along diagonals in a standard drawing of the grid. We will also
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need to find efficient colorings of some subgraphs that are left after we remove diagonal-like separators. That is the
reason why we first present efficient colorings for the rhombus and the two triangle subgraphs of the grid.

In the figures of the following sections thicker lines indicate the selection of separator vertices which will receive
unique and maximum colors. Thinner lines that lie on different sides of a thicker line may reuse the same color range.

2.1. Rhombi and Triangles

The rhombus. The rhombus Rx is the first subgraph of the grid shown in figure 1. It has height x. We have the
following upper bound.

Proposition 9. χo(Rx) ≤ 3x/2 = 1.5x.

Proof. Use a diagonal separator to cut the rhombus in half (x/2 unique colors are used), then cut also the remaining
parts in half with a diagonal separator (x/4 unique colors, used in both parts). This is shown in figure 1. Therefore,
we have the recursive formula χo(Rx) ≤ x/2 + x/4 + χo(Rbx/2c), which implies χo(Rx) ≤ 3x/2.

x

x

x/2

x/2

Figure 1: The rhombus subgraph Rx and its separation

x/2

x

x/3

2x/3

xw

2xw

Figure 2: The wide-side triangle Tx and its separations

The wide-side triangle. The wide-side triangle Tx is the subgraph of the grid shown in figure 2. Its long side has
length x. First, we provide a simple upper bound.

Proposition 10. χo(Tx) ≤ 7x/6 ≈ 1.167x.

Proof. See the first separation of the wide-side triangle in figure 2. Use a separator diagonally, parallel to one of
the diagonal sides of the triangle Tx, with 2x/6 unique colors. In the two remaining parts, separate diagonally by
using separators parallel to the other diagonal side of the triangle Tx; each of those separators uses x/6 unique colors.
With one more use of x/6 unique colors, we end up with connected components that are subgraphs of the rhombus
R2x/6. Therefore, χo(Tx) ≤ 2x/6 + x/6 + x/6 + χo(Rb2x/6c), and since by proposition 9, χo(Rx) ≤ 3x/2, we have
χo(Tx) ≤ 7x/6.
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An improved upper bound can be obtained by the previous one, by making the observation that the graph on the
left of the thickest separator in figure 2 is also a wide-side triangle. Thus, we may try to color it recursively in the same
way. However, this would not improve the bound because the graph that remains on the right side uses 5x/6 colors
anyway. This indicates that the thickest separator would be better positioned if we moved it slightly to the right, since
it seems that the remaining graph on the right side requires more colors.

Suppose that we move it slightly to the right, as in the last part of figure 2 and that the ratio of its length over the
length of the long side of the triangle is w (previously we had w = 1/3). We will optimize with respect to this w.
Now, the rhombi on the right have length x(1 − 2w), and the separators between them have length x(1 − 2w)/2. From
the previously shown upper bound for the rhombus, and the fact that we need two sets of colors for the separators
we conclude that the right part needs at most 5

2 x(1 − 2w) colors. Assuming that the two parts are well balanced, the
whole triangle needs at most wx + 5

2 x(1 − 2w) colors. The triangle formed on the left of the separator has length 2wx,
thus from the above it needs 2w2x + 5

2 (2wx)(1 − 2w) and in order for the balancing assumption to hold this must be
equal to the number of colors used in the right part. Thus, we have 2w2 + 5w(1 − 2w) = 5

2 (1 − 2w), which implies

w = 5−
√

5
8 ≈ 0.345. It is not hard to verify that using a separator of this length all the above arguments hold. Thus, we

reach the following conclusion.

Proposition 11. χo(Tx) ≤
√

5x/2 ≈ 1.118x.

x

x

x/2

x/2

Figure 3: The right triangle Ox and its separation

The right triangle. The right triangle Ox is the subgraph of the grid shown in figure 3. It has height x. We have the
following upper bound.

Proposition 12. χo(Ox) ≤ φx =
√

5+1
2 x ≈ 1.618x.

Proof. See figure 3. Use a separator diagonally to form two wide-side triangles whose long sides are of length x. We
have the formula χo(Ox) ≤ x/2+χo(Tx) and since by proposition 11, χo(Tx) ≤

√
5x/2, we have χo(Ox) ≤

√
5+1
2 x = φx,

where we denote by φ the golden ratio.

2.2. Grids and tori
An 8m/3 upper bound for square grids. In the first part of figure 4, we show how an m ×m grid has to be partitioned
with the help of separators to achieve an 8m/3 upper bound.

The separators use m, m/3, and m/3 colors. After the removal of the separators, the remaining components are all
subgraphs of a rhombus of height 2m/3. By proposition 9, each remaining component can be colored with m colors.
In total, 8m/3 colors are required.

Proposition 13. χo(Gm) ≤ 8m/3 ≈ 2.667m.

An 18m/7 upper bound for square grids. In the second part of figure 4, we show how an m × m grid has to be
partitioned with the help of separators to achieve an 18m/7 upper bound. The separators use m, 3m/7, 3m/7, m/7, and
m/7 colors. Then, we have rhombi of height 2m/7 that remain and, by proposition 9, each rhombus can be colored
with 3m/7 colors. In total, we have 18m/7 colors.

Proposition 14. χo(Gm) ≤ 18m/7 ≈ 2.571m.
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Figure 4: 8m/3, 18m/7 and (7 + 2φ)m/4 upper bounds

A (7+2φ)m/4 upper bound for square grids. In the third part of figure 4 we show how an m×m grid can be partitioned
to achieve a (7 + 2φ)m/4 upper bound; we show only the partitioning of the subgraph under the first-level separator,
since the subgraph over it is done in a symmetric way. We will show in the following section that shrinking this
particular partition gives the best currently known result. The separators use m + m/2 + m/4 = 7m/4 unique colors.
The remaining subgraphs of the grid to be colored are rhombi of height m/2 and right triangles of height m/2. By
propositions 9 and 12 they can be colored with 3m/4 and φm/2 colors, respectively. Therefore the total use of colors
is 7m/4 + max(3m/4, φm/2) = (7 + 2φ)m/4.

Proposition 15. χo(Gm) ≤ (7 + 2φ)m/4 ≈ 2.559m.

Improving the upper bounds by extending and shrinking colorings. The aforementioned upper bounds may be slightly
improved by extending or shrinking the underlying grid. The reason is that, even though for the most part the grid is
partitioned into rhombi, different subgraphs are formed along the boundary of the grid (see again figure 4).

Figure 5: An 8m/3 coloring extended and a (7 + 2φ)m/4 coloring shrunk

In the case of the 8m/3 and 18m/7 bounds, we can see that wide-side triangles are formed along the boundary
of the grid. Each such wide-side triangle has about half the area of a rhombus in the grid. Therefore, it might be
beneficial to extend the grid and the coloring by x at every direction (up, down, left, right) to the point where each
extended wide-side triangle uses the same number of colors as each rhombus. However, extending the coloring of
the grid will also make the separators longer and we must check if the additional colors used in the separators do not
cancel any effect from the balancing we did on wide-side triangles and rhombi. The method of extending indeed gives
an improvement for the 8m/3 coloring. The extension by x at every direction is shown in the first part of figure 5.
The value of extension is chosen so that wide-side triangle T2m/3+2x is using the same number of colors as rhombus
R2m/3 (we use the colorings for the rhombus and the wide-side triangle from propositions 9 and 11, respectively) and
it is x = (3

√
5 − 5)m/15 ≈ 0.114m. We also check that, since x < m/6, the two graphs formed at the top-right and

bottom-left corner of the first part of figure 5 are subgraphs of rhombus R2m/3. The extended grid has side length
m′ = m + 2x ≈ 1.228m. The first level separator has size m + 2x, the second level separator 1

3 m + x and the third level
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separator 1
3 m + x. After removal of the separators, only connected components that can be colored with at most m

colors are left. In total, 8
3 m + 4x = 4(13 + 3

√
5)m′/31 colors are used and therefore we have the following.

Proposition 16. χo(Gm) ≤ 4(13 + 3
√

5)m/31 ≈ 2.543m.

In the case of the (7 + 2φ)m/4 coloring, we follow the opposite approach of shrinking the coloring. Four right
triangles are formed at the corners of the grid, each using more colors than each of the rhombi. Therefore, slightly
shrinking the grid so that the right-side triangles use the same number of colors as the rhombi improves the result. We
shrink the grid by x at every direction (up, down, left, right), as shown in the second part of figure 5. The optimal
amount of shrinking (so that the rhombus Rm/2 is using the same number of colors as the right-side triangle Om/2−x

according to the colorings of propositions 9 and 12, respectively) is x = (7−3
√

5)m/16 ≈ 0.01824m. The shrunk grid
has side m′ = m − 2x ≈ 0.9635m. The first level separator has size m − 2x, the second level separator 1

2 m − x and the
third level separator 1

4 m − x. After removal of the separators, only connected components that can be colored with at
most 3m/4 colors are left. In total, 5

2 m − 4x = 3(7 +
√

5)m′/11 colors are used. Thus, we get our best upper bound
for the ordered chromatic number of the square grid.

Proposition 17. χo(Gm) ≤ 3(7 +
√

5)m/11 ≈ 2.519m.

Torus. An efficient coloring of the torus Ĝm is as follows: Use the two diagonals as separators (at most 2m vertices).
The remaining two connected components are subgraphs of the rhombus Rm which can be colored with at most 3m/2
colors. Therefore, we have the following proposition.

Proposition 18. χo(Ĝm) ≤ 7m/2 = 3.5m.

Rectangular grids. Intuitively, a rectangular grid begins to resemble a chain when one of its dimensions, say m1, is
much smaller than the other, i.e., m1 � m2. We may attempt to exploit this observation in the following manner:
given a grid with m1 rows and m2 columns, pick the m1-th column, the 2m1-th column, . . ., the (bm2/m1c · m1)-th
column. These bm2/m1c columns will be used as separators, thus partitioning the graph into subgraphs of m1 × m1
grids; each subgraph will use the same colors. However, the column separators do not all need distinct colors,
because we can color them in a way similar to the coloring of a chain: the middle column receives the highest
colors, then we color recursively the columns to the left and those to the right. This results to an upper bound of
χo(Gm1,m2 ) ≤ m1

⌈
1 + log(bm2/m1c)

⌉
+ χo(Gm1,m1 ).

Moreover, the above upper bound can be further improved slightly. Instead of using columns as separators we
may use a zig-zag line starting from the top left corner and proceeding diagonally to the right until it hits the bottom,
then to the right and up again, and so on. This requires the same number of colors for the separators, since we can still
color them in a chain-like fashion, but now wide-side triangles are formed (instead of grids), each of length 2m1, for
which χo(T2m1 ) ≤

√
5m1, from proposition 11. Thus, we reach the following conclusion.

Proposition 19. χo(Gm1,m2 ) ≤ m1
⌈
1 + log(bm2/m1c)

⌉
+
√

5m1

3. Separators and lower bounds

In this section we prove lower bounds on the ordered chromatic number of square grids and tori.
An important observation is the following: Suppose we are given an optimal ordered coloring of a graph, and let

c1, c2, . . . , ck be the colors used, in decreasing order. If ci is the first color in this order assigned to more than one
vertex, then vertices with colors c1, . . . , ci−1 must form a separator, otherwise the path connecting the two vertices of
color ci would not have a unique maximum vertex. Thus, we can reason about a lower bound by reasoning about
separators: We examine cases on the size and shape of the separator formed by the highest colors of an optimal
coloring and then, for each case, argue that the size of the separator plus the ordered chromatic number of one of
the remaining components is higher than a desired lower bound. Moreover, it is enough to consider only inclusion
minimal separators, as shown in [16]. We restate formally the result from [16], in our notation.
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Lemma 20. For a connected graph G = (V, E),

χo(G) = min
S∈Q

(
|S | + χo(G − S )

)
,

where Q is a non-empty family of subsets of V that includes at least the inclusion minimal separators of G.

In order to argue that in a grid after the removal of a separator the ordered chromatic number of a remaining
connected component is high, we will rely heavily on proposition 5 (monotonicity under minors, and thus also under
subgraphs, of the ordered chromatic number) and make use of induction.

Before proceeding to the proof of the lower bounds, we should state some auxiliary results, related to separators
in general, and also to the form of separators in grid-like graphs. The following lemma is mentioned without proof in
[17] and is similar to an exercise in [18].

Lemma 21. A separator S of a connected graph G is inclusion minimal if and only if every vertex of S has a vertex
adjacent in every connected component of G − S .

Proof. If S is an inclusion minimal separator, then, for the sake of contradiction, assume there is a vertex v ∈ S which
has no vertex adjacent in some connected component A of G − S . Since v is not adjacent with any vertex of C, every
path in G from a vertex of A to a vertex in the other connected components contains a vertex in S \ {v}. Therefore,
S \ {v} is still a separator, contradicting the inclusion minimality of S .

If every vertex v ∈ S has a vertex adjacent in every connected component of G−S , then for every v ∈ S , G−(S \ {v})
consists of a single connected component, and thus S \ {v} is not a separator, i.e., S is inclusion minimal.

We are now ready to state and prove some facts about the form of inclusion minimal separators in Gm. We remark
that any inclusion minimal separator S of Gm for m ≥ 2 has size |S | < m2.

Lemma 22. If S is an inclusion minimal separator of Gm, where m ≥ 2, then Gm−S consists of exactly two connected
components.

Proof. Assume for the sake of contradiction that Gm−S consists of at least three connected components, say A, B and
C. Without loss of generality, assume there is a vertex v = (x, y) of the separator with adjacent vertices a = (x − 1, y),
b = (x + 1, y), and c = (x, y + 1), such that a ∈ A, b ∈ B, and c ∈ C (see figure 6). Then, u = (x − 1, y + 1) must be in

va b

cu w
b1

b2

a1

a2

Figure 6: Impossibility of three connected components in Gm − S

the separator S , because of the path auc, and w = (x + 1, y + 1) must also be in the separator S , because of the path
bwc. Then, by lemma 21, u must be adjacent to a vertex b′ in B (at least one of vertices b1, b2 in figure 6), and w must
be adjacent to a vertex a′ in A (at least one of vertices a1, a2 in figure 6).

Consider the embedding of Gm in the plane with the standard drawing, where the edges are straight line segments.
Moreover, simple paths in Gm induce simple curves in the above embedding. Since a and a′ are in the same connected
component A, there is a simple path connecting a and a′ contained completely in A. There is also the simple path
from a to a′ through v, c, and w, which does not intersect with the previous path. Those two paths together form a
simple closed curve Ka in the embedding (a Jordan curve). By the Jordan curve theorem, the Jordan curve Ka divides
the plane into two maximal connected subsets, that we call regions (we do not use the more standard term ‘connected
components’ to avoid confusion with connected components of Gm − S ), and each region’s boundary is exactly the
Jordan curve Ka. Consider the following two subsets of the plane: s1 is square bvcw minus the segments vc and vw,
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and s2 is square avcu minus the segments av and vc. Sets s1 and s2 are contained in different regions, because part
of their boundary (i.e., segment vc) is contained in Ka, and because Ka does intersect neither s1 (since b < Ka) nor
s2 (since u < Ka). Therefore, b ∈ s1 and u ∈ s2 are in different regions. Moreover, b′ and u are in the same region,
because curve Ka can not intersect the straight line segment b′u. Therefore, b and b′ are in different regions. Since
b and b′ are in the same connected component B of Gm − S , there is a simple path from b to b′ consisting only of
vertices in B. This simple path induces a simple curve Kb in the embedding of Gm and, since b and b′ are in different
regions, this curve intersects the closed curve Ka at some point. Because these curves arise from paths in Gm, they can
only intersect at some vertex point, which is a contradiction because curve Ka consists only of vertices in A, C, and S
(not B).

We say that two vertices (x1, y1), (x2, y2) of a separator of Gm are neighboring if |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1.
In other words, a vertex of a separator neighbors with any vertex directly up, left, down, right (we call these the grid
directions), or directly up-left, down-left, down-right, up-right (we call these the intermediate directions). In order
to avoid confusion, in this work, we reserve the term ‘adjacent’ for connection only along the grid directions and the
term ‘neighboring’ for connection possibly also along the intermediate directions. The boundary of the grid consists
of the four paths, each having m vertices, with x = 0, x = m − 1, y = 0, and y = m − 1, respectively.

Lemma 23. The vertices of any inclusion minimal separator of Gm, for m ≥ 2, can be put in a sequence such that no
vertex is repeated, adjacent vertices in the sequence are neighboring, and either (i) the first and the last vertex of the
sequence are also neighboring, or (ii) if the first and the last vertex of the sequence are not neighboring, then the first
and the last vertex of the sequence are the only ones lying on the boundary of the grid.

Proof. By lemma 22 any inclusion minimal separator divides the graph into two connected components and by
lemma 21, every vertex of the separator is adjacent with a vertex from both connected components. Consider a
vertex of the separator which is not on the sides of the grid. This vertex can not have less than two neighboring
vertices in the separator, because then all its adjacent vertices in the grid that are not in the separator are in the same
connected component.

It is also not possible that a vertex v of the inclusion minimal separator has two neighbors such that both of
these neighbors are in the grid directions. Assume, without loss of generality, that vertex v = (x, y) has neighbors
u = (x, y − 1) and w = (x + 1, y) in the separator. Then, by lemma 21, since a = (x, y + 1) and b = (x − 1, y) must be
in different components, vertex z = (x − 1, y + 1) must also be in the separator (see figure 7). But then, vertex v has

v

u

w

a

b

z

Figure 7: Vertex v with two grid direction neighbors in the separator

three neighbors in the inclusion minimal separator and this is a case that we will prove impossible immediately in the
following.

We are now going to prove that in an inclusion minimal separator a vertex v can not have more than two neighbors.
We consider different cases on the number of neighbors at intermediate directions, ranging from one to three, as shown
in figure 8 (we do not have to check the case where three neighbors are all at grid directions, because then v has two
neighbors in grid directions and we have already discussed this case above). In all cases, the impossibility proofs are
similar to the proof of lemma 22. In particular, with the labeling of vertices shown in figure 8, where a and a′ are
in the same component A of Gm − S and b and b′ are in the same other component B of Gm − S , in all three cases,
we consider a simple path in Gm from a to a′ which in the standard drawing of graph Gm is embedded as a simple
polygonal line. We also consider the polygonal line avua′ which does not intersect the previous polygonal line. The
two polygonal lines form a simple closed curve Ka, which (from Jordan curve theorem) separates the plane into two
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w
a

b
z

a′

b′

v

u

w
a

b
z

a′

b′

Figure 8: Vertex v has three neighbors of which 1, 2, and 3 are at intermediate directions

maximal connected subsets (regions). The polygonal lines vzb and vwb′ do not intersect Ka except at v and lie in
different regions. Therefore b and b′ lie in different regions. Since b and b′ are in the same connected component B of
Gm − S , there is a simple path from b to b′ consisting only of vertices in B. This simple path induces a simple curve
Kb in the embedding of Gm and, since b and b′ are in different regions, this curve intersects the closed curve Ka at
some point. Since Kb arises from a path in Gm and Kb is a special polygonal curve with vertices only on grid points,
curves Ka and Kb can only intersect at some vertex point, which is a contradiction because curve Ka consists only of
vertices in A and S (not B).

The four possible neighboring cases of a vertex in the inclusion minimal separator which does not lie on the sides
of the grid, ignoring rotations, are shown in figure 9.

Figure 9: Four possible neighboring cases for an inclusion minimal separator vertex

We also can not have, for an inclusion minimal separator S , a vertex v ∈ S on the boundary of the grid with
only one neighbor w ∈ S , such that w is also on the boundary of the grid, because then v has only neighbors in one
connected component of Gm − S .

Now, we are going to build a special sequence of vertices of an inlusion minimal separator S .
If there is no vertex with only one neighbor in the separator (case i), then we choose any vertex v as the initial

vertex of the sequence. Vertex v has two neighbors in S , say v′ and v′′. We choose any of them, say v′, to be the next
vertex in the sequence. Then, we extend the sequence by choosing the next element to be the neighbor of the current
element not already in the sequence, until we reach the neighbor v′′ of v (this always happens because the separator
S has a finite number of elements). We claim that the built sequence includes all vertices of separator S . Consider,
the closed polygonal line K with vertices in the order of the sequence built. By the Jordan curve theorem, K divides
the plane in a region inside the curve and an unbounded region outside the curve. Both regions contain vertices of
the original graph, as can be seen in figure 9. Every embedding of a path in Gm connecting two vertices in different
regions has to touch closed curve K, and in particular one of its vertices. Thus, the vertices of the built sequence are
indeed a separator, and since S is inclusion minimal the built sequence includes all vertices of S .

If there is a vertex v with only one neighbor in S (case ii), then we choose v as the initial vertex of the sequence
(this vertex has to lie on the boundary of the grid). Then, we extend the sequence by choosing the next element to be
the neighbor of the current element not already in the sequence, until we reach an element w with only one neighbor
in S (this always happens because the separator S has a finite number of elements). We claim that the built sequence
includes all vertices of separator S . Consider, the polygonal line K with vertices in the order of the sequence built.
With the help of the Jordan curve theorem, one can prove that K divides the square containing the embedding of the
grid in two regions. Both regions contain vertices of the original graph, as can be seen in figure 9. Every embedding
of a path in Gm connecting two vertices in different regions has to touch closed curve K, and in particular one of its
vertices. Thus, the vertices of the built sequence are indeed a separator, and since S is inclusion minimal the built
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sequence includes all vertices of S .
As a result, inclusion minimal separators are of the following two types, according to their aforementioned built

sequence:

(i) the first and the last vertex of the sequence are neighboring,
(ii) if the first and the last vertex of the sequence are not neighboring, then the first and the last vertex of the

sequence are the only ones lying on the boundary of the grid.

We remark that a separator of type (i) surrounds one of the connected components of Gm − S .

Examples of the two types of inclusion minimal separators are shown in figure 10.

Figure 10: Inclusion minimal separators of types (i) and (ii)

Proposition 24. For m ≥ 2, χo(Gm) ≥ 3m/2.

Proof. Since we want to prove a 3m/2 lower bound, we consider only separators of size |S | < 3m/2. The lower bound
is true for m = 2 and m = 3 because χo(G2) = 3 and χo(G3) = 5. We consider any optimal ordered coloring C of
Gm. We will analyze all possible cases of cases of an inclusion minimal separator S and will prove that in every case
|S | + χo(Gm − S ) ≥ 3m/2. In some special cases we will consider a set U of vertices with unique colors and we will
prove that |U | + χo(Gm − U) ≥ 3m/2. Then, by lemma 20, χo(Gm) ≥ 3m/2.

If the inclusion minimal separator S is of type (i), then it surrounds a connected component, say A of Gm−S . This
connected component does not include any vertex of the boundary of the grid. Assume that this connected component
is exactly contained in a Gw,h subgraph of Gm and without loss of generality w ≥ h. This connected component has
a vertex in every one of the w columns it spans and since this vertex must be separated by vertices above and below
that are not in the connected component, there must be at least two vertices of the separator in every one of these w
columns. Moreover, a vertex in the leftmost of the w columns must be separated by vertices to the left of it and a vertex
in the rightmost of the w columns must be separated by vertices to the right of it, i.e., there are two more vertices in
the separator that we have not counted before. In total, separator S has at least 2w+2 vertices. Moreover, every vertex
of the separator touches a vertex of A and is thus contained in a Gw+2,h+2 grid subgraph of Gm. This grid subgraph
Gw+2,h+2 is contained in a Gw+2 subgraph of Gm. If, from Gm, we remove this Gw+2, then remove edges completely in
the w+2 rows and the w+2 columns that Gw+2 occupied, and then smooth the remaining vertices of the w+2 rows and
w + 2 columns that Gw+2 occupied, then we end up with a Gm−w−2 graph. Thus Gm − S contains a Gm−w−2 topological
minor, with Gm−w−2 ⊇ G2, because an inclusion minimal separator of type (i) can not touch both a boundary row and
a boundary column of Gm. As a result, |S |+ χo(Gm − S ) ≥ |S |+ χo(Gm−w−2) ≥ 2w + 2 + 3

2 (m−w− 2) = 3
2 m + w

2 − 1. If
w > 1, then the 3m/2 lower bound is true. If w = 1, the above bounding method does not apply and in the following
we resort to a different method in order to prove a 3m/2 lower bound.

If w = 1, then connected component A consists of a single vertex v = (x, y), because w ≥ h. We call the inclusion
minimal separator

{(x − 1, y), (x, y − 1), (x + 1, y), (x, y + 1)}

a diamond with center v = (x, y). If under the optimal coloring C, Gm contains a set of uniquely colored vertices which
form a different inclusion minimal separator S ′ than a diamond, then we focus on S ′ and argue as in the other cases of
this proof. Otherwise, the uniquely colored vertices by C in Gm form only diamond inclusion minimal separators. We
can assume that in C the centers of each diamond are colored with color 1, because we can assume that no uniquely
colored vertex is colored with 1 (if it is we can switch color 1 with any other color that is repeating in the coloring and
still have an optimal ordered coloring).
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Figure 11: Diamonds (in black) and their frontiers (in white)

We define the frontier of a diamond to be the set of vertices not including the center or vertices of the diamond that
neighbor with at least one of the vertices of the diamond in one of the eight directions: up, down, left, right, up-left,
up-right, down-left, down-right (see figure 11). If a vertex of the diamond is on the boundary of Gm, then the frontier
consists of 13 vertices (left part of figure 11), otherwise the frontier consists of 16 vertices (right part of figure 11).
The diamond can not have its center at any of (1, 1), (1,m−2), (m−2, 1), (m−2,m−2), because then it is not inclusion
minimal. We call a diamond free if there is no vertex with unique color in its frontier (i.e., no other diamond touches
its frontier).

If there is a non-free diamond, then we consider it together with a diamond that touches its frontier. We have the
following five cases, ignoring symmetries: if the diamonds share some vertex, then either (a) the diamonds have two
vertices in common, or (b) the diamonds have one vertex in common; if the diamonds do not share some vertex, then
the diamonds either (c) share two common frontier vertices, or they share one common frontier vertex and (d) the two
diamonds are completely contained in three rows or columns, or (e) the two diamonds are not completely contained
in three rows or columns. These five cases are shown in figure 12. In all five case, we locate a set U of vertices with

Figure 12: Non-free diamonds

unique colors contained in a Gq grid subgraph. If, from Gm, we remove this Gq subgraph, then remove all edges that
lie completely in the q rows and q columns that Gq occupied, and then smooth all vertices in the q rows and q columns
that Gq occupied, what remains is a Gm−q graph. Therefore, Gm − U contains Gm−q as a topological minor, which by
induction has ordered chromatic number χo(Gm−q) ≥ 3

2 (m − q), because m − q ≥ 2 (otherwise there are non-diamond
inclusion minimal separators induced by some uniquely colored vertices in the coloring of Gm). Using lemma 20,
χo(Gm) has lower bound |U | + 3

2 (m − q). The grid Gq is shown with a gray background in every one of the five cases
in figure 12. We check indeed that the lower bound applies in every case.

(a) |U | = 6, q = 4 and the lower bound is 6 + 3
2 (m − 4) = 3m/2;

(b) |U | = 5, q = 3 and the lower bound is 5 + 3
2 (m − 3) > 3m/2;

(c) |U | = 3, q = 2 and the lower bound is 3 + 3
2 (m − 2) = 3m/2;

(d) |U | = 6, q = 4 and the lower bound is 6 + 3
2 (m − 4) = 3m/2;

(e) |U | = 6, q = 4 and the lower bound is 6 + 3
2 (m − 4) = 3m/2.
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Now, we prove that it is not possible that every diamond is free, because then the optimal coloring C is not ordered.
Assume that we remove all diamonds and their centers from the graph and we consider the coloring restricted to the
remaining graph G′. Since G′ ⊆ Gm the coloring restricted to G′ is ordered. Graph G′ contains a connected set with
more than one vertex (for example the frontier of some removed diamond) and thus its coloring uses more than one
color. In this coloring, every color occurs more than once with the possible exception of color 1 (because we have
removed all diamonds that had the uniquely colored vertices). Thus, the maximum color in the restricted coloring of
G′ is occuring in two different vertices v and u of G′. If G′ is connected, then in a simple path of G′ from u to v, the
maximum color occuring in the path is not unique. So, it is enough to prove that G′ is connected in order to have a
contradiction. The proof is by induction on the number of free diamonds. If there is no free diamond, then we have
Gm which is connected. By the inductive hypothesis, graph Gm after the removal of k free diamonds and their centers
(we denote the resulting graph with Hk) is connected. Consider the subgraph Hk+1 of Hk, where we remove one more
free diamond d. The frontier of d is still contained in Hk+1. Thus, every simple path p in Hk between two vertices
of Hk+1 that is using an internal vertex in d can be transformed to a path with the same endvertices that avoids d, as
follows: Starting from one endvertex, follow path p until you reach the first occurence in p of a vertex in the frontier
of d, then continue with a path in the frontier of d to the last occurence in p of a vertex in the frontier of d, and then
follow path p until you reach the other endvertex. Thus, Hk+1 is connected.

If the inclusion minimal separator S is of type (ii), then we consider two cases according to whether |S | < m or
|S | ≥ m.

If the separator has size s = |S | < m, then it can not span neither all rows nor all columns of Gm. Moreover,
since, according to lemma 23, elements of S can be put in a sequence such that adjacent elements in the sequence are
neighboring, the following is true: If there is a vertex of S in row (or column) i and a vertex of S in row (or column)
j, then there is a vertex of S in every row (or column) between i and j. Thus, there is at least one row and one column
in the boundary of Gm that contains no vertex of S . Assume without loss of generality that S has neither a vertex in
column x = m− 1 nor in row y = m− 1. Consider the grid subgraph Gm−ds/2e of Gm that contains vertex (m− 1,m− 1).
We claim that S can not contain some vertex of this Gm−ds/2e subgraph. Assume for the sake of contradiction that it
does. A sequence of S from lemma 23 starts at a vertex in column x = 0 or row y = 0, then goes on for at least ds/2e
vertices before reaching a vertex in S , and then it goes on for at least ds/2e vertices before reaching a vertex in column
x = 0 or row y = 0. Therefore, the sequence has length at least ds/2e+ 1 + ds/2e > s, which is a contradiction because
|S | = s. As a result, G − S ⊇ Gm−ds/2e (with m − ds/2e ≥ 2, because m > 3 and s < m) and by the inductive hypothesis
and lemma 20, we have χo(Gm) ≥ s + 3

2 (m − ds/2e) ≥ 3m/2, whenever s ≥ 2 (which is true because no single vertex
forms a separator).

If the separator has size s = |S | ≥ m, then we study two subcases depending on whether s ≥ m + 2, or s ≤ m + 1.
If s ≥ m + 2, we consider the four grid Gbm/2−s/6c subgraphs of Gm, each containing one of the four corner vertices

(0, 0), (0,m − 1), (m − 1, 0), (m − 1,m − 1) of Gm. We claim that S can not contain a vertex in every one of the four
Gbm/2−s/6c subgraphs. Assume for the sake of contradiction that it does. Consider a sequence of S from lemma 23.
In this sequence, choose four vertices, one from each of the four Gbm/2−s/6c subgraphs. Between any two subsequent
of the above four vertices there are at least m − 2bm

2 −
s
6 c vertices in the sequence not contained in any of the four

Gbm/2−s/6c subgraphs. Therefore, the sequence has length at least

4 + 3(m − 2bm
2 −

s
6 c) ≥ 4 + 3(m − 2( m

2 −
s
6 )) = s + 4 > s,

which is a contradiction because |S | = s. As a result, G−S ⊇ Gbm/2−s/6c. We check that since s < 3m/2, bm/2− s/6c ≥
bm/4c, which is greater than 1 for m ≥ 8. For 3 < m < 8 and m + 2 ≤ s < 3m/2, we have that bm/2 − s/6c = 1 only
for the pairs:

(m = 5, s = 7), (m = 6, s = 8), (m = 7, s = 10).

For all three pairs the lower bound that we would like to prove, χo(G5) ≥ 8, χo(G6) ≥ 9, χo(G5) ≥ 11, respectively, is
one more than the size s of the separator S and since G − S contains at least one vertex, we can prove it. For the rest
of the cases, by the inductive hypothesis and lemma 20, we have

χo(Gm) ≥ s + 3
2 b

m
2 −

s
6 c ≥ s + 3

2 ( m
2 −

s
6 − 1) = 3

4 (m + s − 2) ≥ 3m/2,

because s ≥ m + 2.
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If s = m or s = m + 1, we consider the four grid Gdm/2−s/6e subgraphs of Gm, each containing one of the four corner
vertices (0, 0), (0,m− 1), (m− 1, 0), (m− 1,m− 1) of Gm. Consider a sequence of S from lemma 23. If S has a vertex
common with each of the four Gdm/2−s/6e subgraphs, then, in this sequence, choose four vertices, one from each of
the four Gdm/2−s/6e subgraphs. Between any two subsequent of the above four vertices there are at least m − 2dm

2 −
s
6 e

vertices in the sequence not contained in any of the four Gdm/2−s/6e subgraphs. Therefore, the sequence has length at
least L = 4 + 3(m − 2dm

2 −
s
6 e).

If m is of the form 3k or 3k + 2, where k is an integer, then L > s, as shown in the following.

• If m = 3k and s = m, then L = 4 + 3(3k − 2( 3
2 k − 3

6 k)) = 3k + 4 = s + 4.

• If m = 3k and s = m + 1, then L = 4 + 3(3k − 2dk − 1
6 e) = 4 + 3(3k − 2k) = 3k + 4 = s + 3.

• If m = 3k + 2 and s = m, then L = 4 + 3(3k + 2 − 2dk + 1
3 e) = 3k + 4 = s + 2.

• If m = 3k + 2 and s = m + 1, then L = 4 + 3(3k + 2 − 2dk + 1
6 e) = 3k + 4 = s + 1.

Therefore, S can not contain a vertex in every one of the four Gdm/2−s/6e subgraphs. As a result, G − S ⊇ Gdm/2−s/6e
and by the inductive hypothesis and lemma 20, we have χo(Gm) ≥ s+ 3

2 (dm/2− s/6e) ≥ 3m/4+3s/4 ≥ 3m/2, because
s ≥ m.

If however m is of the form 3k + 1 (and s = m or s = m + 1), then S might have a vertex in every one of four Gk+1
subgraphs at the corners of the grid (for both s = m and s = m + 1, dm/2 − s/6e = k + 1). We may assume without
loss of generality that the sequence of S from lemma 23 starts (without loss of generality) from column x = 0 and
ends at column x = m − 1, with the exception of m = 4 and s = 5. If not, i.e., if the sequence of S starts from column
x = 0 and ends at row y = 0 (without loss of generality), then consider the Gk+1 subgraph containing the corner vertex
(m − 1,m − 1). The sequence starts from column x = 0 continues for at least m − (k + 1) vertices before it reaches a
vertex in the above subgraph and then continues for at least m− (k + 1) vertices before it reaches row y = 0, i.e., it has
length at least

m − (k + 1) + 1 + m − (k + 1) = 2m − 2k − 1 = 2(3k + 1) − 2k − 1 = 4k + 1,

which is always greater than s, if s = m = 3k + 1 or if s = m + 1 = 3k + 2 and k > 1, i.e., when neither m = 4 nor
s = 5.

If the sequence of S from lemma 23 starts from column x = 0 and ends at column x = m − 1, then, as we
mentioned before, it contains vertices in every column. Moreover, if s = m it contains exactly one vertex in every
column, whereas is s = m + 1, it contains one vertex in every column with the exception of one column (which is not
on the boundary of the grid). In the s = m + 1 case, the two vertices in the same column x = i must be neighboring
(if they are not neighboring, the separator has another column next to column i with more than one vertices). We can
assume without loss of generality that there is no column with two vertices among the first k + 1 columns (from x = 0
to x = k). Then, since S must have a vertex in both the Gk+1 at corner (0, 0) and the Gk+1 in corner (0,m − 1), we can
assume that the restriction of the separator in the first k + 1 columns is exactly the set {(i, k + i) | 0 ≤ i ≤ k}. We then
consider the grid Gk+1 subgraph with corners at (1, 0), (k + 1, 0), (k + 1, k), (1, k). We call this subgraph X.

We may assume that S also has a vertex v in X, because otherwise we can already prove a lower bound of 3m/2
as before with the help of X. This vertex v must be in column x = k + 1. If k > 1, then vertex (k, 2k) of the separator
can not neighbor (even along a diagonal) with vertex v, because v has y-coordinate at most k. Therefore, there must
be one more vertex w of the separator different from v in column k + 1, which implies that s = m + 1, i.e., s = m is
not possible. As described above, w has to neighbor with v. This vertex has also to neighbor with (k, 2k) and thus the
only possibility is that w = (k + 1, 2k − 1). Moreover, v and w are the only vertices in column x = k + 1. If k > 2, v
and w are not neighboring, which is a contradiction. If k = 2, i.e., m = 7, then necessarily w = (3, 3) and v = (3, 2)
(see figure 13).

By a similar argument as above, since every one of the last 3 columns (x = 5, 6, 7) has exactly one vertex of S ,
then the separator restricted to these last columns is either:

l1 = {(4, 4), (5, 3), (6, 2)} or l2 = {(4, 2), (5, 3), (6, 4)}.

If the restriction is l1, then w has three neighbors in the separator, (3, 2), (2, 4), and (4, 4), and thus S is not inclusion
minimal, which is a contradiction. If the restriction is l2, then S has no vertex in the G3 grid subgraph with corners at
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Figure 13: The case m = 7 when s = 7 or s = 8

(3, 4), (5, 4), (5, 6), (3, 6), that we call Y (see figure 13), and we can prove a 3m/2 lower bound as before with the help
of Y .

We have not argued about the case when k = 1 (m = 4). For m = 4, if s = m = 4 the sequence of S goes (without
loss of generality) from row x = 0 to row x = m − 1 and thus contains no vertex in column y = 0. Column y = 0 is a
path graph P4 with χo(P4) = 3. Thus, we have a lower bound of 4 + χo(G − S ) ≥ 4 + 3 = 7 > 6. If s = m + 1 = 5, then
G−S contains at least some (non-empty) component and thus we have a lower bound of 5+χo(G−S ) ≥ 5+1 = 6.

Since Ĝm contains Gm as a subgraph, because of monotonicity of the ordered chromatic number under subgraphs,
we immediately have the following corollary.

Corollary 25. For m ≥ 2, χo(Ĝm) ≥ 3m/2.

4. Discussion and open problems

The most important problem still left open is the exact value of χo(Gm). For small values of m the correct answer
seems to be 2m − 1, but maybe this is just an exception for small values of m, and asymptotics could be different and
closer to 2.5m. At the moment, in our lower bound proof for the square grid, after the removal of a separator, we only
consider square grids that remain (either as a subgraph or a minor). It would also be interesting to study lower bounds
for the rhombus and the triangle subgraphs, or possibly for non-square grids, and then combine them to improve the
lower bound for the square grid.
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