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ABSTRACT
A token is hidden in one of several boxes and then the boxes are
locked. The probability of placing the token in each of the boxes
is known. A searcher is looking for the token by unlocking boxes
where each box is associated with an unlocking cost. The searcher
conducts its search in rounds and must find the token in a predeter-
mined number of rounds. In each round, the searcher may unlock
any set of locked boxes concurrently. The optimization goal is to
minimize the expected cost of unlocking boxes until the token is
found. The motivation and main application of this game is the task
of paging a mobile user (token) who is roaming in a zone of cells
(boxes) in a cellular network system. Here, the unlocking costs
reflect cell congestions and the placing probabilities represent the
likelihood of the user residing in particular cells. Another applica-
tion is the task of finding some data (token) that may be known to
one of the sensors (boxes) of a sensor network. Here, the unlock-
ing costs reflect the energy consumption of querying sensors and
the placing probabilities represent the likelihood of the data being
found in particular sensors. In general, we call mobile data any
entity that has to be searched for.

The special case, in which all the boxes have equal unlocking
costs has been well studied in recent years and several optimal poly-
nomial time solutions exist. To the best of our knowledge, this pa-
per is the first to study the general problem in which each box may
be associated with a different unlocking cost. We first present three
special interesting and important cases for which optimal polyno-
mial time algorithms exist: (i) There is no a priori knowledge about
the location of the token and therefore all the placing probabilities
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are the same. (ii) There are no delay constraints so in each round
only one box is unlocked. (iii) The token is atypical in the sense
that it is more likely to be placed in boxes whose unlocking cost is
low. Next, we consider the case of a typical token for which the un-
locking cost of any box is proportional to the probability of placing
the token in this box. We show that computing the optimal strategy
is strongly NP-Hard for any number of unlocking rounds, we pro-
vide a PTAS algorithm, and analyze a greedy solution. We propose
a natural dynamic programming heuristic that unlocks the boxes in
a non-increasing order of the ratio probability over cost. For two
rounds, we prove that this strategy is a 1.143-approximation solu-
tion for an arbitrary token and a 1.108-approximation for a typical
token and that both bounds are tight. For an arbitrary token, we
provide a more complicated PTAS.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms

Keywords
Partitioning and scheduling, design and analysis of algorithms, ap-
proximation algorithms

1. INTRODUCTION
Consider the following combinatorial game. A token is hidden

in one out of N boxes following some probability distribution. The
boxes are then locked and the only known information about the
location of the token is the probability distribution. Each box is
associated with an unlocking cost. A searcher needs to find the
token as fast as possible by unlocking boxes while minimizing the
expected unlocking cost. The searcher is given D rounds, where
1 ≤ D ≤ N, to find the token where in each round the searcher may
unlock any set of locked boxes.



Let the boxes be C1, . . . ,CN , let w1, . . . ,wN be the unlocking
costs, and let p1, . . . , pN be the placing probabilities: with prob-
ability pi the token is placed in box Ci. The fastest but the most ex-
pensive search strategy would unlock all the N boxes in one round,
(a blanket search). The other extreme is to unlock one box per
round terminating once the token is found (a sequential search). In
general, a search strategy for D rounds is an ordered D-partition
A = 〈A1, . . . , AD〉 of the boxes, such that in the ith round, all the
boxes in the set Ai are unlocked if the token was not found during
the previous (i− 1) rounds. The search process terminates in round
d if the token is found in one of the boxes of the set Ad. Then the
cost for the searcher is the total cost of unlocking all the boxes from
the sets A1, . . . , Ad.

The ultimate goal is to minimize both the number of rounds and
the expected unlocking cost until the token is found. These are the
two main criteria in evaluating the efficiency of a specific search
strategy. The problem studied in this paper is a common way to
attack bi-criteria optimization problems by constraining one crite-
rion and optimizing the other: Given the delay constraint of finding
the token in at most D search rounds, design a search strategy with
minimum expected unlocking cost.
Example: Let N = 3, the placing probabilities be 0.5, 0.2, 0.3,
and the unlocking costs be 0.1, 0.2, 0.7 for boxes C1, C2, C3, re-
spectively. The cost of unlocking all the boxes in one round is 1.
Suppose now that the token must be found in D = 2 rounds. One
possible search strategy is 〈{C1}, {C2,C3}〉. For this strategy, with
probability 0.5 the token is found in C1 for a cost of 0.1. Other-
wise, with probability (0.2 + 0.3) all the boxes are unlocked for a
cost of 1. Thus, the total expected cost is 0.5 · 0.1 + 0.5 · 1 = 0.55.
Another possible search strategy is 〈{C1,C2}, {C3}〉. For this strat-
egy, with probability (0.5 + 0.2) the token is found in the first
round for a cost of (0.1 + 0.2). Otherwise, with probability 0.3,
all the boxes are unlocked for a cost of 1. Thus, the total ex-
pected cost is 0.7 · 0.3 + 0.3 · 1 = 0.51. The above two search
strategies follow the non-increasing order pi/wi. The expected cost
of the search strategy 〈{C2}, {C1,C3}〉 that “violates” this order is
0.2 · 0.2 + (0.5 + 0.3) · 1 = 0.84. Finally, it is not hard to see that
with three rounds the best strategy is to unlock the boxes following
the order C1,C2,C3. With probability 0.5, only C1 is unlocked for
a cost of 0.1, with probability 0.2, both C1 and C2 are unlocked
for the cost of (0.1 + 0.2), and with probability 0.3, all boxes are
unlocked for the cost of 1. The total expected cost is therefore
0.5 · 0.1 + 0.2 · (0.1 + 0.2) + 0.3 · 1 = 0.41 which is the best possible
for this example.
Motivation: The main application to the above game is the task
of paging a mobile user (token) that is roaming among the cells
(boxes) of a cellular network (e.g., [14]). When a call to a user
arrives, the system must locate the exact cell in which the user re-
sides to establish a connection. If the user reports its new location
whenever it crosses boundaries of cells, then the system “knows” its
exact location at any time and the task of finding this user becomes
trivial. Since cellular networks are expected to have many cells
(mini-cells or micro-cells) and mobile users are expected to move
very fast, the user might cross boundaries of cells very frequently.
This would make it infeasible for the user to report its new loca-
tion each time it enters a different cell because the reporting pro-
cess consumes the “expensive” resources: time, energy, and uplink
bandwidth. Indeed, many existing location management schemes
instruct mobile users to report less often. A common location man-
agement framework partitions the cells into location areas (zones),
each with possibly many cells. A user reports its new location to
the system only when it crosses zone boundaries (e.g., [23]). When
a call to a user arrives, the system may page some or all the N cells

(boxes) in some zone to find the user. Although the choice of a
location management scheme to minimize the overall use of sys-
tem resources depends on many parameters, such a paging step is
common to most of the schemes. Frequently, the system is look-
ing for a mobile user without knowing the exact location of this
user. However, in many cases, some a priori knowledge about the
whereabouts of the user is known. This knowledge can be modeled
with N probability values, one value associated with each of the N
cells: with probability pi the mobile user resides in cell Ci. This
a priori knowledge could either be supplied by the user itself, be
extracted from history logs maintained by the system, be based on
recent reports and calls involving this user, or be based on some
mobility patterns. A paramount task in any location management
scheme is to design, analyze, implement, and evaluate efficient pag-
ing (search) strategies for a mobile user while taking advantage of
any partial knowledge of its whereabouts. The optimization goals
are to find the user as fast as possible while “paying” as little as
possible for paging the cells.

A special case of this problem in which wi = 1 for all i ∈
{1, . . . ,N} has been studied thoroughly. This special case corre-
sponds to searching for a mobile user in D rounds while minimizing
the expected number of cells paged. Efficient polynomial time dy-
namic programming solutions are known for this case. The scope
of this paper is the general case for which the paging costs are not
the same for all cells. This mainly reflects the fact that cellular net-
works are highly correlated with user density and cell congestion.
As a result, paging a cell with more users could be more expensive
than paging a cell with less users. In addition, there are a lot of
other factors affecting the cost of paging a cell, which include the
maintenance cost of the base stations, the different regulations on
radiation emission, etc.
Mobile Data: The scope of this paper is very general. Let mobile
data be an abstraction of any entity in a network whose exact loca-
tion is not known to the system at the time when a specific query
is looking for this data. Instead, the system knows that the mobile
data may be found in one out of N locations. The system has a
profile for the data which is represented as a vector of probabili-
ties: with probability pi the data is in location Ci. Whenever the
system queries location Ci to see if it has the data it pays a cost
of wi. Paging mobile users in cellular networks is one application
to this general setting but there are more applications. Consider a
wireless sensor network that accumulates some information (e.g.,
weather or traffic). Mobile data may be any information that can be
found in this sensor network. In order to save battery energy, the
sensors do not push the information but only reply to queries. As
a result, the system needs to pull the data by probing the sensors.
The above framework models the pull task where the objectives are
to minimize the time it takes to get the data and to minimize the
expected cost incurred by the sensors that are probed. The above
two applications are for wireless networks, but one could think of
similar applications in any kind of network, for example, the task of
looking for some data in the Internet or in a peer-to-peer network.
Prior art and related work: The general framework of mobile
user location management has been studied a lot in the past fif-
teen years; see the survey [1]. Modeling uncertainty of locations
of mobiles as a probability distribution vector was first studied in
[19, 21]. The paper [20] introduced the user profile based paging
scheme, under which the problem solved in this paper is discussed.
The papers [14, 17, 20, 15, 3] described optimal solutions based
on dynamic programming when all cells are of equal cost. The
papers [15, 20] studied how to minimize the expected number of
paged cells given an average (as opposed to worst-case) delay con-
straint using relaxation to a continuous model [20] or with a weakly



polynomial dynamic programming solution [15]. The problem of
paging more than one user for a conference call was studied in [5,
7, 13, 11, 12]. The problem of online paging a mobile user (in
contrast to predetermined offline paging) was studied in [6]. The
paper [9] explored a similar problem in which the order of cells is
dictated in the context of TTL flood searching in sensor networks.
The problem of paging mobile users with inaccurate information of
the user location probabilities was studied in [4].

Contributions: To the best of our knowledge, this generalized ver-
sion of the problem, i.e., wi being an arbitrary number for each
Ci, was not studied prior to our work. Indeed, the algorithms that
generate optimal search strategies when wi = 1 may have very bad
performance because they ignore the different costs. Thus, our goal
is to explore different solutions and approaches for the general case
of arbitrary cost values.

We start with three interesting and important special cases for
which polynomial time optimal strategy algorithms exist. In the
first, the searcher has no a priori knowledge about the location of
the token, so it assumes that all the probabilities are the same. We
show that this case is “dual” to the traditional case in which all the
costs are the same. Therefore, the known optimal dynamic pro-
gramming solutions can be applied to this case as well. In the sec-
ond, there are no delay constraints and the searcher may search
the token in N rounds. We show that opening the boxes in a non-
increasing order of the ratio pi/wi is an optimal strategy. In the
third, the token is atypical in the sense that it is more likely to be
placed in boxes with low unlocking costs. We show that applying
known dynamic programming solutions on the boxes ordered by
the non-increasing order of the ratio pi/wi yields an optimal search
strategy. We refer to this algorithm as FRO (Follow Ratio Order).

Next, we consider the case of a token that has a higher proba-
bility of being placed in “expensive” boxes (in cellular networks,
this corresponds to a mobile user who follows the massive behav-
ior of other users). Let a typical token be a token for which pi is
proportional to wi. We show that for a typical token the problem
has a relatively simple Polynomial Time Approximation Scheme
(PTAS). This is best possible because we also show that the prob-
lem is strongly NP-hard already for D = 2 and therefore a Fully
PTAS (FPTAS) is impossible. We also show that the problem for
a typical token is similar to a known version of the load balancing
problem. As a result, we analyze the natural greedy solution bor-
rowed from the load balancing problem and show similar results to
those that were known for the load balancing problem.

Next we address the case of D = 2 rounds. For an arbitrary token
that may be placed in any box with any probability, we show that
the FRO strategy has a tight guaranteed 8/7 ≈ 1.143 approximation
ratio. For a typical token, we design another solution that implies
a slightly better tight guaranteed 7−2

√
7

28−10
√

7
≈ 1.108 approximation

ratio. We also provide a PTAS for the general case, which is how-
ever more complicated than the PTAS given for typical tokens. The
PTAS can be modified to work for an arbitrary constant number of
rounds.

Paper organization: In section 2 we provide formal definitions
and some preliminaries. In section 3 we present three cases for
which optimal polynomial time algorithms exist. In section 4 we
study the case of typical tokens. In Section 5 we analyze the per-
formance of FRO for two rounds and describe the PTAS for the
general case. In section 6 we conclude with some open problems.

2. PRELIMINARIES
Denote the N boxes by C1,C2, . . . ,CN . Let p = 〈p1, p2, . . . , pN〉

be the vector of probabilities of the token being placed in these

boxes respectively. Let w = 〈w1,w2, . . . ,wN〉 be the vector of costs
of unlocking these boxes respectively. Denote the delay constraint
for finding the token by D, 1 ≤ D ≤ N. An instance to the problem
is the quadruple I = (N,D,w,p). An instance I is a uniform cost
instance if w1 = · · · = wN = 1/N and a uniform probability instance
if p1 = · · · = pN = 1/N.

A search strategyA = 〈A1, . . . , AD〉 is an ordered D-partition of
the boxes, such that in the ith round, all the boxes in the set Ai are
unlocked. The search process terminates in round d if the token is
found in one of the boxes of the set Ad. For a given search strategy
A and a round 1 ≤ d ≤ D, the round probability is Pd =

∑
Ci∈Ad

pi

and the round cost is Wd =
∑

Ci∈Ad
wi. The cost of search strategyA

on an instance I = (N,D,w,p) is denoted by cost(A,I) and when
the definition of I is clear it is denoted by cost(A).

Proposition 1. The following are two different but equivalent
ways to compute the search cost of strategy A = 〈A1, . . . , AD〉 on
instance I = (N,D,w,p):

cost(A,I) =
∑D

d=1

(
Pd

∑d
i=1 Wi

)
cost(A,I) =

∑D
d=1

(
Wd

∑D
i=d Pi

) (1)

Proof. The first equation follows since with probability Pd the
token is found during the dth round and the strategy pays the cost
of the first d sets A1, . . . , Ad of the partition. The second equation
follows since the strategy pays the cost of the dth round only if the
token is in a box belonging to the last (D − d + 1) sets Ad, . . . , AD

of the partition.

An optimal search strategy is a search strategy whose cost is
the minimum among all possible search strategies. An optimal
algorithm is an algorithm that generates optimal search strategies
for all possible instances. Let OPT be an optimal algorithm and
ALG be any search algorithm. ALG is a (1 + ε)-approximation, if
cost(ALG(x))/cost(OPT(x)) ≤ (1 + ε) for any instance x.
Normalizing the cost and the probability vectors: We observe
the following basic fact that allows us to assume without loss of
generality that

∑N
i=1 wi = 1 and that

∑N
i=1 pi = 1.

Proposition 2. Let O be an optimal search strategy on boxes
with probabilities pi and costs wi, 1 ≤ i ≤ N. O is also an optimal
search strategy on boxes with probabilities p′i and costs w′i , if w′i =

cw · wi and p′i = cp · pi, where 1 ≤ i ≤ N and cw and cp are positive
constants. The approximation ratio of any non-optimal solution is
retained, too.

Types of tokens: We classify tokens by their typicality. In one
extreme, the probability vector of a typical token is proportional
to its cost vector. By Proposition 2, without loss of generality, for
a typical token, pi = wi for any box Ci. In the other extreme,
an atypical token is more likely to be located in lower cost boxes.
Formally, the costs and the probabilities are in opposite order. A
token with no typicality association is called an arbitrary token.
Such a token may be located in any box Ci with arbitrary cost wi

and arbitrary probability pi.
Optimal polynomial time algorithms: We say that an ordered
partition A = 〈A1, . . . , AD〉 respects the order of boxes C1, C2, . . .,
CN if there are no Ai, A j with i < j, such that Ci′ ∈ Ai and C j′ ∈ A j

with i′ > j′. Given an order of the boxes, one can find a minimum
cost partition that respects that order in polynomial time by slightly
modifying the dynamic programming methods described in [14, 20,
17, 15, 3] to include costs of boxes. A naive implementation im-
plies an O(N2D) algorithm. We mention below a more efficient
implementation. The proof is omitted for space considerations.



Theorem 1. The dynamic programming scheme from [3] can
be implemented in Θ(ND) time to find a minimum cost partition
that respects a given order on the boxes.

Unfortunately, for the general problem, as we will prove later, it
is impossible to find in polynomial time the order of boxes in an
optimal search strategy, unless P = NP.
Algorithm FRO: Consider the N boxes in a non-increasing order
of the pi/wi ratio. That is, p1/w1 ≥ p2/w2 ≥ · · · ≥ pN/wN . We
call the algorithm that computes the minimum cost partition that
respects the above order Algorithm FRO (follow ratio order). Al-
gorithm FRO can also be implemented in time Θ(ND) by adapting
the dynamic programing scheme from [3].

3. OPTIMAL SEARCH STRATEGIES
The traditional version of the problem with instances of uniform

cost can be solved by polynomial time algorithms [14, 20, 15, 3].
In this section, we first present two lemmas that reveal some prop-
erties an optimal searching strategy must retain; and then, based on
the lemmas, we show three special cases in which optimal search
strategies can be found with polynomial time algorithms.

Lemma 1. If there is an order of the boxes such that p1 ≥ . . . ≥
pN while w1 ≤ . . . ≤ wN , then algorithm FRO follows this order and
generates an optimal search strategy.

Proof. Assume for the sake of contradiction that there exists an
optimal solution A = 〈A1, . . . , AD〉 that does not respect the non-
decreasing order of the ratios pi/wi. This implies the existence of
indices j < i (and therefore pi < p j and wi > w j) such that Ci ∈ Ad

and C j ∈ Ad+1 for some 1 ≤ d < D. Define a new partition A′

which is almost identical to A except that Ci and C j are swapped.
To get a contradiction, we show that the cost of A′ is smaller than
the cost of A. The probability and cost for rounds d and d + 1 are
related as follows: Pd = P′d + pi, Wd = W ′

d + wi, Pd+1 = P′d+1 + p j,
and Wd+1 = W ′

d+1 + w j. A careful examination of the terms in
Eq. (1) from Proposition 1 reveals that both cost(A) and cost(A′)
share identical terms except that cost(A) has unique terms P′dwi +

p jwi + p jW ′
d+1 and cost(A′) has unique terms P′dw j + piw j + piW ′

d+1
Now, since pi < p j and wi > w j, it follows that cost(A′) <

cost(A).

Lemma 2. LetA = 〈A1, . . . , AD〉 be an optimal solution for an
arbitrary instance I. Then Pd/Wd ≥ Pd+1/Wd+1, for 1 ≤ d < D.

Proof. Fix d, 1 ≤ d < D. Define another search strategy A′ =

〈A1, . . . , Ad−1, Ad+1, Ad, . . . , AD〉 that is obtained from A by swap-
ping Ad and Ad+1. By Proposition 1, it follows that cost(A′) −
cost(A) = PdWd+1 − Pd+1Wd. This is because in both strategies all
the costs that incurred by Wi for i < d and i > d + 1 are the same
and in both strategies the terms PdWd and Pd+1Wd+1 are part of the
cost. Now, sinceA is optimal, it follows that PdWd+1−Pd+1Wd ≥ 0,
which is equivalent to Pd/Wd ≥ Pd+1/Wd+1.

Uniform Probabilities: The uniform probability case is when all
the probabilities are 1/N (in contrast to uniform cost case in [14,
20, 15, 3]). This is the case when the searcher has no clue for the
whereabouts of the token but still knows the unlocking costs asso-
ciated with the boxes. In Section 2, we show that the algorithm
FRO yields optimal solution if the order of optimal searching strat-
egy is known for any number of rounds 2 ≤ D ≤ N. In the uniform
probabilities case, Lemma 1 provides this optimal order by sorting
the boxes in non-decreasing order of unlocking cost wi, by which
FRO generates optimal polynomial time solutions.

Atypical token: Recall that an atypical token is one that ap-
pears in boxes of lower unlocking costs with higher probabilities.
For an atypical token, the non-increasing order of the probability
vector corresponds to the non-decreasing order of the cost vector.
Lemma 1 directly implies that an optimal search strategy can be
found in polynomial time for such tokens.

D = N rounds: The following corollary is a direct implication of
Lemma 2, which implies that the polynomial time algorithm FRO
generates an optimal search strategy for the case D = N.

Corollary 1. For D = N, the optimal search strategy unlocks
the boxes in a non-increasing order of pi/wi, one box per round.

4. TYPICAL TOKENS
In this section, we discuss and analyze search strategies for the

special case of typical tokens. Recall that a typical token is more
likely to be found in high cost boxes and therefore, after normal-
izing the cost and probability values, we assume that pi = wi for
all 1 ≤ i ≤ N. We prove that the problem is strongly NP-Hard
even in this special case. In particular, we show that the problem is
essentially a variation of a known load balancing problem. This en-
ables us to apply a known polynomial time approximation scheme
(PTAS) solution for the load balancing problem to our problem of
searching for typical tokens. In addition, we analyze the perfor-
mance of a natural load balancing greedy algorithm applied to the
search problem. We first show how to compute the cost for a typical
token by simplifying the equations from Proposition 1.

Proposition 3. Let I = (N,D,p,p) be an instance of the typical
token problem and A = 〈A1, . . . , AD〉 be a search strategy. Then,
cost(A, I) = 1

2 + 1
2

∑D
d=1 (Pd)2.

Proof. For all 1 ≤ d ≤ D, denote by Pd = Wd the probability as
well as the cost of the set Ad. By Proposition 1,

cost(A, I) =

D∑
d=1

Pd

d∑
i=1

Wi

 =
∑

1≤i≤ j≤D

PiP j =
1
2

( D∑
d=1

Pd

)2

+

D∑
d=1

(Pd)2


The proposition follows since

∑D
d=1 Pd = 1.

The above proposition implies that for a typical token and a given
search strategyA, the cost is the same regardless of the order of the
D sets inA. That is, the task of finding an efficient D-round search
strategy becomes the task of partitioning the N boxes into D sets
while minimizing a particular cost function. One can view the sets
as machines and the probabilities as the processing times of tasks.
Then the problem is almost identical to the known load balancing
problem from [8, 10] whose goal is to minimize the L2 norm of the
tasks’ completion time on all the machines. Formally,

Definition 1. Let {T1, . . . ,TN} be N tasks and {M1, . . . ,MD} be
D machines. The processing time for Ti on any machine is pi. The
load balancing problem is to find an allocation of tasks to machines
that minimizes the L2 norm of the completion time on all machines∑D

d=1(
∑

Ti∈Md
pi)2.

If X is the optimization goal of the load balancing problem and
Y is the optimization goal of the search problem, then X = (1 +

Y)/2 by Proposition 3 and Definition 1. As a result, we now show
that any approximation algorithm to the load balancing problem is
also an approximation algorithm to the searching for typical tokens
problem with an even smaller approximation factor.



Lemma 3. Let ALG be a (1+ε)-approximation algorithm to the
load balancing problem where (1 + ε) is a tight bound. Then ALG
is a (1 + ε′)-approximation algorithm to the searching for typical
tokens problem, where ε′ < ε

2 for all instances and ε′ ≥ ε
D+1 for

some instance.

Proof. Let OPT be an optimal solution to the load balancing
problem. Let O andA be the L2 norm of solutions OPT and ALG,
respectively. Let OPT′ be an optimal solution to the search typical
tokens problem. Let ALG′ = ALG be a (1 + ε′)-approximation
solution to the search problem. Let O′ = cost(OPT′) and A′ =

cost(ALG′). By definition, we haveA ≤ (1 + ε)O for all instances
in the load balancing problem. Therefore,

1 + ε′ =
A′

O′
=

0.5 + 0.5A
0.5 + 0.5O

≤
1 + (1 + ε)O

1 + O
= 1 +

O

1 + O
ε

for all instances. Since (1+ε) is a tight bound to the load balancing
problem, we haveA = (1 + ε)O for some instance. Therefore,

1 + ε′ =
A′

O′
=

0.5 + 0.5A
0.5 + 0.5O

=
1 + (1 + ε)O

1 + O
= 1 +

O

1 + O
ε

for some instance.
Since all Pi ≥ 0 and

∑D
i=1 Pi = 1, it follows that the cost

∑D
i=1 P2

i
(Definition 1) of any solution to the load balancing problem is
greater than 1/D and smaller than 1. In particular 1/D ≤ O ≤ 1
and therefore O/(1 + O) ≤ 1/2 for all instances and O/(1 + O) ≥
1/(D + 1) for some instance.

The paper [2] pointed out that the load balancing problem is
strongly NP-Hard. The next theorem follows since Lemma 3 gives
a lower bound to the approximation ratio to the searching for typi-
cal tokens problem without N as a parameter.

Theorem 2. For any N > D ≥ 2, the search problem is strongly
NP-Hard, even for a typical token.

Constant approximation ratio algorithms to the load balancing
problem have been introduced in [8, 10] and a PTAS to this prob-
lem has been presented in [2]. The following theorem is another
corollary of Lemma 3.

Theorem 3. For any N > D ≥ 2, there exists a constant ap-
proximation ratio algorithm and a PTAS to the searching for typi-
cal tokens problem.

Algorithm S in [8] is a natural greedy algorithm. Essentially, it
allocates boxes one by one in a non-increasing order of pi to the set
Ad currently with the smallest Pd. In some cases, like when D = 2,
one can compute exactly the approximation ratio of S for both the
load balancing and the searching for typical tokens problems. We
omit the technical details. The specific approximation ratios for
different values of N and D of Algorithm S for the load balanc-
ing problem and for the searching for typical tokens problem (by
lemma 3) are shown in Table 1. In the table, the meaning of [x, y]
is that there exists a y approximation factor and there cannot be an
approximation factor smaller than x.

5. ALGORITHM FRO AND A PTAS
In this section, we analyze the performance of Algorithm FRO

for two rounds on arbitrary tokens whose cost vector has no correla-
tion to the probability vector. Note that the problem for an arbitrary
token is strongly NP hard when 2 ≤ D < N because it is strongly
NP-hard already for a typical token. Therefore, our goal is to prove
a guaranteed approximation factor. We show that the approxima-
tion ratio of FRO is 8/7 ≈ 1.143 for D = 2 rounds. For typical

Case Load Balancing Typical Tokens
N ≤ 4, any D 1 1
D = 2, N ≥ 5 tight ≈ 1.0285 tight ≈ 1.0143
D = 3, N ≥ 5 [83/81, 25/24] [326/324, 49/48]

even D ≥ 4, N ≥ 5 [37/36, 25/24] [1 + 1
36(D+1) , 49/48]

odd D ≥ 5, N > 5 [1 +
(D−1)
36D , 25/24] [1 +

(D−1)
36D(D+1) , 49/48]

Table 1: Approximation ratio of S-algorithm

tokens, we slightly improve the ratio to 7−2
√

7
28−10

√
7
≈ 1.108. For both

cases, we provide instances that show that these bounds are tight.
We also provide a PTAS for the general case, for two rounds, that
can be extended to a PTAS for any constant number of rounds D.

5.1 FRO for arbitrary tokens

Theorem 4. Algorithm FRO has an approximation ratio 8/7
when D = 2 and N > 2, and the ratio 8/7 is attainable.

Proof. First, we show that an upper bound on the approxima-
tion ratio of FRO for N = 3, 4 is also an upper found for all N > 2
(Lemma 4). Next, we prove that the upper bound on the approx-
imation ratio of FRO for N = 3, 4 is 8/7 (Lemmas 5, 6). Finally,
for every N, we construct an instance with approximation ratio 8/7
(Lemma 7).

Lemma 4. For each instance with N ≥ 4 for which the ap-
proximation ratio of FRO is ρ, there exists an instance, with either
N = 3 or 4, for which the approximation ratio of FRO is at least ρ.

Proof. Let an instance IN consist of boxes {C1, . . . ,CN}, where
N ≥ 4, with optimal partition OPTN = 〈X,Y〉 and FRO partition
FRON = 〈X′,Y ′〉. Define the following four subsets of the N boxes:
A = X ∩ X′, B = X′ \ X, C = Y ′ \ Y , D = Y ∩ Y ′. Then, OPTN =

〈A ∪C, B ∪ D〉 and FRON = 〈A ∪ B,C ∪ D〉.
If all four sets A, B,C,D are not empty, we construct an instance

I4 with N = 4 boxes as follows. The boxes are {CA,CB,CC ,CD},
such that pS =

∑
ci∈S pi and wS =

∑
ci∈S wi, where i = 1 . . .N and

S ∈ {A, B,C,D}. Let OPT4 be the optimal solution for I4. It follows
that cost(OPT4) = cost(OPTN), because: (i) cost(OPT4) cannot be
less than cost(OPTN), otherwise OPTN would not be optimal (tak-
ing the corresponding OPT4 partition); (ii) cost(OPT4) can reach
cost(OPTN) by taking OPT4 = 〈{CACC}, {CBCD}〉 (by definition of
partition {A, B,C,D}). It also follows that the FRO partition on I4

is FRO4 = 〈{CACB}, {CCCD}〉 because FRON = 〈A ∪ B,C ∪ D〉.
Thus, cost(FRO4) ≥ cost(FRON). Therefore,

cost(FRON)/cost(OPTN) ≤ cost(FRO4)/cost(OPT4) .

If either of the four sets A, B,C,D is empty, we can similarly
construct an instance of N = 3 with at least the same approximation
ratio. Finally, if there are at least two empty sets among A, B, C, D,
then OPT is FRO, and thus the approximation ratio is 1.

Corollary 2. An upper bound ρ on the approximation ratio of
FRO for all instances with N = 3 or N = 4 is also an upper bound
on the approximation ratio for all instances with N > 4.

It remains to prove the following two lemmas to complete the
proof of Theorem 4. The full proofs of Lemma 5 and Lemma 6 are
technically non-trivial, involving tedious case analysis; thus, we do
not include them because of space considerations.

Lemma 5. For all instances with N = 3, the approximation
ratio ρ = cost(FRO)/cost(OPT) ≤ 8/7.



Lemma 6. For all instances with N = 4, the approximation
ratio ρ = cost(FRO)/cost(OPT) ≤ 8/7.

In the next lemma we show that the 8/7 upper bound on the
approximation ratio is tight.

Lemma 7. The approximation ratio 8/7 is attainable for any
N > 2.

Proof. Consider the instance with p1 = 1
4 , p2 = 3

4 , p3 = · · · =

pN = 0 and w1 = 1
5 , w2 = 3

5 , w3 = · · · = wN = (5(N − 2))−1.
Algorithm FRO outputs the partition (1|23 . . .N) the cost of which
is 4/5, while the optimal partition is (2|13 . . .N) the cost of which
is 7/10. The approximation ratio is thus 8/7.

5.2 FRO for typical tokens
For a typical token, FRO does not distinguish among the boxes

since all the ratios are 1. Therefore, we assume that an adversary
picks the worst permutation on the boxes that is respected by FRO.
Still, we can prove a smaller guaranteed approximation factor for
this case.

Theorem 5. Algorithm FRO has approximation ratio 7−2
√

7
28−10

√
7
≈

1.108 when D = 2 and N > D, and this ratio is attainable.

Proof. (outline) The proof is very similar to the proof of Theo-
rem 4. First, the reduction lemma, Lemma 4, is correct for any type
of token. Then the proofs of the equivalent Lemmas (but with a
different ratio) to Lemma 5 and Lemma 6 are easier since there are
fewer variables. Finally, the next lemma demonstrates the instance
for which the ratio is attainable.

Lemma 8. The approximation ratio 7−2
√

7
28−10

√
7

is attainable for
any N > 2.

Proof. For simplicity, assume that 0/0 = 1 since one can replace
each zero value with a small ε. Consider the instance with p1 =

w1 = x, p2 = w2 = 1 − 2x, p3 = w3 = x, and p4 = w4 = · · · =

pN = wN = 0. FRO, that respects this order, outputs the partition
(1|23 . . .N) the cost of which is 1−x+x2 while the optimal partition
is (2|13 . . .N) the cost of which is 1 − 2x + 4x2. The maximum of
the ratio is achieved for x = (3 −

√
7)/2 and is 7−2

√
7

28−10
√

7
.

5.3 A general PTAS for D=2
We present a PTAS for the problem of finding a strategy of opti-

mal expected cost, when D = 2.
Fix an optimal solution OPT. Denote by F1 = 1 and F2 the prob-

ability that OPT will get to first and second round respectively (i.e.,
F2 is the probability that the token is not found by OPT in the first
round). Similarly, let W1 and W2 be the total weight of the cells that
OPT probes in the first and second round, respectively. Therefore,
the cost of OPT is C = F1W1 + F2W2.

Consider a positive constant ε < 1. The first step of the PTAS
is to guess an approximation within a factor of (1 + ε) of each one
of the values of F2, W1, and W2 in the optimal solution. We denote
these approximations with F′2, W ′

1, W ′
2, respectively.

For F′2, we do it as follows: We first guess the maximum proba-
bility of a cell which is probed in the second round of the optimal
solution. We call this probability M. There are N possible values
for M: p1, . . . , pN . Since M ≤ F2 ≤ NM, F2 can be (1 + ε)-
approximated by a value in {M, (1 + ε)M, . . . , (1 + ε)K M}, where
K = dlog1+ε Ne.

Similarly, for each one of W ′
1, W ′

2 we first guess the maximum
weight of a cell probed in the first and second round, respectively,

of the optimal solution. We call these weights M1 and M2, respec-
tively, and each one can take any of the values w1, . . . , wN . Then,
M1 ≤ W1 ≤ NM1 and M2 ≤ W2 ≤ NM2 and thus W1 can be ap-
proximated by a value in {M1, (1 + ε)M1, . . . , (1 + ε)K M1} and W2

can be approximated by a value in {M2, (1 +ε)M2, . . . , (1 +ε)K M2},
where K = dlog1+ε Ne.

The number of possible triples (F′2,W
′
1,W

′
2) is thus (N(K + 1))3,

which is bounded by a polynomial in N and 1/ε. For every triple,
we consider the cost C′ = F1W ′

1 + F′2W ′
2. For one of the triples,

each of F′2, W ′
1, W ′

2, is ε-close to the corresponding value in the
optimal solution, and thus,

C′ ≤ F1(1 + ε)W1 + (1 + ε)F2(1 + ε)W2

≤ (1 + ε)2(F1W1 + F2W2)
≤ (1 + 3ε)C. (2)

We apply the following algorithm for each possible triple: With
the help of a linear program, we compute a feasible solution (if
it exists) with corresponding values close enough to the values of
the triple and record the solution’s cost. Then, we return as an
output the feasible solution with minimum cost. In the analysis
of the scheme it suffices to consider the iteration of the algorithm
in which we tried the values of F′2, W ′

1, W ′
2 which are ε-close to

the corresponding values in OPT. In particular, for each triple of
values (F′2,W

′
1,W

′
2), we consider the following linear program, over

variables x1,1, . . . , x1,N , x2,1, . . . , x2,N (An integral feasible solution
to this linear program has the following meaning: xi,n = 1 if cell n
is probed in round i.):

minimize f = W ′
1 +

∑N
n=1 W ′

2 pn x2,n such that:
(a)

∑N
n=1 pn x2,n ≤ F′2

(b)
∑N

n=1 wn x1,n ≤ W ′
1 and

∑N
n=1 wn x2,n ≤ W ′

2
(c) x1,n + x2,n = 1 for n = 1, . . . , n
(d) xd,n ≥ 0 for d = 1, 2 and n = 1, . . . , n

We say that a cell n is a large cell if pnW ′
2 > εC′; otherwise we

say it is a small cell. We denote by Y the set of small cells, and
by Z the set of large cells. Intuitively, the large cells have a major
influence on the value of the goal function f , so we will treat them
separately. Assume B large cells are assigned to round 2 in the
optimal solution. Then,

C ≥ F2W2 ≥ F2W ′
2(1 + ε)−1 > BεC′(1 + ε)−1 ≥ Bε(1 + ε)−1C.

(The last inequality holds, because C′ ≥ C.) Therefore, it must be
the case that Bε(1+ε)−1 < 1, or B < 1+ε−1. i.e., we have a constant
upper bound on the cardinality B of the set X of large cells that are
assigned to round 2 in the optimal solution. Thus, the number of
such sets is O(NB), i.e., polynomial in N.

Our second guessing step would be to guess the set X. That is,
for every subset X ⊆ Z, such that |X| < 1 + ε−1, we set the values of
xi,n for i = 1, 2 and n ∈ Z as follows. For all n ∈ X, we set x1,n = 0
and x2,n = 1, and for all n ∈ Z \ X we set x1,n = 1 and x2,n = 0.
The value of the other decision variables are determined by the
solution of the following linear program, on the set of variables
{x1,n | n ∈ Y} ∪ {x2,n | n ∈ Y}:

minimize f = W ′
1 +

∑N
n=1 W ′

2 pn x2,n such that:
(a)

∑N
n=1 pn x2,n ≤ F′2

(b)
∑N

n=1 wn x1,n ≤ W ′
1 and

∑N
n=1 wn x2,n ≤ W ′

2
(c) x1,n + x2,n = 1 for n ∈ Y
(d) xd,n ≥ 0 for d = 1, 2 and n ∈ Y

The last linear program has 2|Y | variables and four types of con-
straints:



(a) One constraint with pn coefficients (constraint of type a),

(b) Two constraints with wn coefficients (constraints of type b),

(c) |Y | equality constraints where coefficients equal to 1 (con-
straints of type c),

(d) 2|Y | non-negativity constraints.

We compute an optimal basic solution to the linear program [18].
Such a solution exists for the correct value of F′1,W

′
1,W

′
2 and X

because for such values OPT corresponds to a feasible solution for
the above linear program whose goal function value is

W ′
1 + W ′

2F2 ≤ W ′
1 + W ′

2F′2 = C′.

Therefore, the cost of the basic optimal solution which we find, is
at most C′.

Moreover, a basic solution of the above linear program has the
property that 2|Y | linearly independent constraints of the linear pro-
gram are set to equality (i.e., as many constraints as the number of
variables). This means that at least |Y | − 3 of the (d)-constraints are
set to equality, i.e., at least |Y | − 3 variables are set to 0. However,
if xd,n = 0 for some d = 1, 2 and some n, then (because of the
corresponding (c)-constraint) x(3−d),n = 1. This further implies that
the variables that correspond to at most 3 cells (i.e., 6 variables) are
set to fractional (non-integral) values in a basic optimal solution. A
similar method of bounding the number of fractional values of a ba-
sic solution was first employed in [16], in the context of scheduling
unrelated parallel machines.

Let x∗ be a basic optimal solution to the linear program. We
will associate with it a cost C∗ = W∗

1 + W∗
2 P∗2, where P∗2 = F∗2 =∑N

n=1 pn x∗2,n, W∗
1 =

∑N
n=1 wn x∗1,n, W∗

2 =
∑N

n=1 wn x∗2,n. Since W∗
1 ≤ W ′

1,
W∗

2 ≤ W ′
2, and P∗2 = F∗2 = F′2, we have

C∗ ≤ C′ (3)

Assume without loss of generality that the non-integral values
are at a subset of the cells 1, 2, and 3 (that is, we assume that
cells 4, 5, . . . ,N have integral solution). We round the non-integral
variables of the linear program so that xr

11 = xr
12 = xr

13 = 0 and
xr

21 = xr
22 = xr

23 = 1, i.e., we assign the non-integral cells to the
second round, and xr

d,n = x∗d,n, for every other variable. Consider
the cost Cr of the rounded solution; we intend to compare Cr and
C∗. We define:

∆p = x∗11 p1 + x∗12 p2 + x∗13 p3

and

∆w = x∗11w1 + x∗12w2 + x∗13w3.

Then,

∆C = Cr −C∗

= (W∗
1 − ∆w) + (W∗

2 + ∆w)(P∗2 + ∆p) − (W∗
1 + W∗

2 P∗2)
= ∆w(P∗2 + ∆p − 1) + ∆p ·W∗

2 . (4)

Define P−2 = P∗2 − (x∗21 p1 + x∗22 p2 + x∗23 p3), i.e., P−2 is the sum of
the probabilities of the integral cells of round 2, i.e., it does not
contain any probability for cells 1, 2, and 3. But then, P∗2 + ∆p =

P−2 + p1 + p2 + p3 ≤ 1, which implies

∆w(P∗2 + ∆p − 1) ≤ 0. (5)

On the other hand,

∆p ·W∗
2 ≤ ∆p ·W ′

2 = x∗11 p1W ′
2 + x∗12 p2W ′

2 + x∗13 p3W ′
2

≤ x∗11εC
′ + x∗12εC

′ + x∗13εC
′ ≤ 3εC′. (6)

Then, using inequalities (5) and (6), equation (4) implies

Cr ≤ C∗+3εC′ ≤ C′+3εC′ = (1+3ε)C′ ≤ (1+3ε)2C ≤ (1+15ε)C,

where the second inequality is true because of (3) and the fourth
inequality because of (2). Therefore the rounded solution is an
(1 + ε′)-approximation, if we choose ε = ε′/15 above.

Although the PTAS we described above is of theoretical interest,
it might not be very attractive for use in a real system, because it
is quite complicated to implement and it relies on computational
tools like linear program solvers. Compare, for example, with the
simplicity of algorithm FRO. We supply theoretical bounds on the
worst-case performance for both the PTAS and the FRO algorithm,
so that a designer of a real system can choose what suits best the
application.

Since we have to solve linear programs in our PTAS, the com-
plexity of our PTAS as described above is dependent on the repre-
sentation size of the probability and weight values. However, we
can make the complexity independent of this representation size as
follows: In the first linear program given above, for every constraint
of type (a) or (b), which is of the form

∑N
n=1 an xn ≤ A, we substi-

tute it with a constraint of the form
∑N

n=1 a′n xn ≤ A(1 + ε), where
a′n = dan · N/(Aε)eAε/N. It is not difficult to see that every feasible
solution of the original linear program is also feasible for the trans-
formed linear program and that we lose another factor of 1 + O(1)ε
in the approximation ratio that can be absorbed in ε′ above. More-
over, if we multiply both sides of the above constraint with N/(Aε),
we get integer coefficients in the constraint matrix whose values are
bounded by a polynomial of N and 1/ε. Then, we can use Tardos’
method from [22] to solve the new linear program in strongly poly-
nomial time and thus get a PTAS which is only polynomial in N
and 1/ε.

Finally, we can adapt the methods described in this section to
give a PTAS for any constant number of rounds D. In this case, we
have to guess approximations to the values of F1, F2, . . . , FD and
W1, W2, . . . , WD; then, we solve a linear program with a constraint
for each one of the above values. We omit the details because of
space considerations.

6. OPEN PROBLEMS
We conjecture that the 8/7 bound for the FRO algorithm, from

section 5.1, holds also for D > 2. Similarly to the D = 2 case,
we can reduce the problem instances with any N to instances with
D ≤ N ≤ D2. However, we do not know how to handle all these
cases, even for D = 3. We only know how to resolve an instance
with N = 4 and D = 3 showing a 8/7 lower bound for algorithm
FRO.

In section 5.3, we presented a PTAS for D = 2, running in poly-
nomial time with respect to the number of boxes, that can be gen-
eralized to a PTAS for a constant number of searching rounds D.
It would be interesting to find a PTAS for an arbitrary number of
rounds D ≤ N (i.e., not necessarily constant D).

The uniform cost case was investigated also in many settings
for paging multiple users in cellular networks. These settings of
finding more than one hidden token could be addressed in the non-
uniform case as well.
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