
Brief Announcement:
Weakening the Online Adversary Just Enough to get

Optimal Conflict-free Colorings for Intervals

Amotz Bar-Noy∗

Brooklyn College
Panagiotis Cheilaris†

CUNY and NTUA
Svetlana Olonetsky‡

Tel-Aviv University
Shakhar Smorodinsky§

Courant Institute, NYU

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of algorithms and problem com-
plexity

General Terms: Algorithms, Theory.

Keywords: Online algorithms, cellular networks, frequency
assignment, conflict free, coloring.

A hypergraph H = (V, E) is a generalization of a graph
for which hyperedges (elements of E) can be arbitrary-sized
non-empty subsets of the vertex set V . A vertex coloring
C : V → N+ of hypergraph H is called conflict-free if in
every hyperedge e there is a vertex whose color is unique
among all other colors in the hyperedge. The above prob-
lem models a frequency assignment problem for cellular net-
works. A cellular network consists of fixed-position base sta-
tions and moving agents. The study of conflict-free colorings
was originated in the work of Even et al. [4] and Smorodin-
sky [6]. In addition to the practical motivation described
above, this new coloring model has drawn much attention
of researchers through its own theoretical interest and such
colorings have been the focus of several recent papers.

Chen et al. [3] considered the special case of the prob-
lem where the hypergraph is defined as follows: Vertices are
identified by points that lie on a line and E consists of all
subsets of V defined by intervals intersecting at least one ver-
tex. Conflict-free coloring for intervals is important because
it can model assignment of frequencies in networks where the
agents’ movement is approximately unidimensional, e.g., the
cellular network that covers a single long road and has to
serve agents that move along this road. Also, conflict-free
coloring for intervals plays a role in the study of conflict-
free coloring for more complicated range spaces (see [4]).
The static version of the problem, where the n points are
to be colored simultaneously, is solved optimally in [4] with
blg nc+ 1 colors.

∗E-mail: amotz@sci.brooklyn.cuny.edu. Supported by the
CUNY Collaborative Incentive Research Grants Program
Round 11 (2004–2006).
†E-mail: philaris@sci.brooklyn.cuny.edu. Supported by the
European Social Fund (75%) and National Resources (25%)
under the program EPEAEK II, ‘Heraclitus’.
‡E-mail: olonetsk@post.tau.ac.il.
§E-mail: shakhar@cims.nyu.edu. Supported by NSF Math-
ematical Sciences Postdoctoral Fellowship award 0402492.

Copyright is held by the author/owner(s).
SPAA’07, June 9–11, 2007, San Diego, California, USA.
ACM 978-1-59593-667-7/07/0006.

The problem becomes more interesting when the vertices
are given online by an adversary. Namely, at every given
time step t ∈ {1, . . . , n}, a new vertex vt ∈ V is given and
the algorithm must assign vt a color such that the coloring
is a conflict-free coloring of the hypergraph that is induced
by the vertices Vt = {v1, . . . , vt}. Once vt is assigned a
color, that color cannot be changed in the future. This is
an online setting, in which the algorithm has no knowledge
of how vertices will be requested in the future. For this ver-
sion of the problem, in the case of intervals, the best known
deterministic algorithm is from [3] and uses O(log2 n) colors
in the worst case. That algorithm requires Ω(log2n) colors
on some inputs. Recently, randomized algorithms that use
O(log n) colors with high probability have been obtained ([3,
1]). All of these algorithms assume the slightly weaker obliv-
ious adversary model, in which the adversary has to commit
on a specific input sequence before revealing the first vertex
to the algorithm without knowing the random bits that the
algorithm is going to use and the expected number of colors
is analyzed. The randomized model can be seen as a relax-
ation of the strict deterministic model: some power is taken
from the adversary, or equivalently given to the algorithm,
in order to use just a logarithmic number of colors. Another
such relaxation, introduced in [2], is to give extra informa-
tion to the algorithm about where each requested point will
end up in the final coloring (the ‘absolute positions’ model).
In the absolute positions model, the best algorithm in [2]
uses 3dlog3 ne ≈ 1.89 lg n colors. Other such relaxations are
given in [2] (coloring with respect to rays) and [5] (online
ranking of paths). In this paper we introduce yet another
relaxation, the recoloring model, in which the algorithm is
allowed to recolor some of the points. An interesting ques-
tion is to come up with O(log n) algorithms that rely as little
as possible on their extra power (as few random bits as pos-
sible, as few recolorings as possible). Towards that goal, in
a unified framework, we provide the best known results: a
randomized algorithms that expectedly uses a logarithmic
number of random bits, and a recoloring algorithm that re-
colors at most one point per request.

Related to applications, the recoloring model is very mo-
tivated: The frequency spectrum is quite expensive, so a
solution which strictly uses a logarithmic number of colors
is desirable. On the other hand excessive recoloring is not
desirable, because if a base station is given another color
there is a disruption of service for all agents connected to it.
Our algorithm uses at most log3/2 t + 1 colors for the first t
points, for every t with 1 ≤ t ≤ n, and for every new request
of a point it recolors at most one of the old points.



An online coloring framework.
First, some basic definitions are needed. Let H = (V, E)

be a hypergraph. For a subset V ′ ⊂ V let H(V ′) be the
hypergraph (V ′, E ′) where E ′ = {e ∩ V ′|e ∈ E}. H(V ′)
is called the induced hypergraph on V ′. For a hypergraph
H = (V, E), the Delaunay graph G(H) is the simple graph
G = (V, E) where the edge set E is defined as E = {(x, y) |
{x, y} ∈ E} (i.e., G is the graph on the vertex set V whose
edges consist of all hyperedges in H of cardinality two).

Let H = (V, E) be a hypergraph induced by intervals. Our
goal is to define a framework that colors the vertices V in
an online fashion. That is, the vertices of V are revealed
by an adversary one at a time. At each time step t, the
algorithm must assign a color to the newly revealed vertex
vt. The coloring has to be conflict-free for all the induced
hypergraphs H(Vt) t = 1, . . . , n, where Vt ⊆ V is the set
of vertices revealed by time t. Let A = {a, b, c} be a set
of auxiliary colors (not to be confused with the set of ‘real’
colors used for the CF-coloring: {1, 2, . . . }). Let f : N → A
be some fixed function. We now define the framework that
depends on the choice of the function f . A table (to be
updated online) is maintained where each entry ` at time
t is associated with a subset V `

t ⊂ Vt in addition to an
auxiliary proper coloring of G(H(V `

t )) (using colors in A).
We say that f(`) is the color that represents entry ` in the
table. At the beginning all entries of the table are empty.
Suppose all entries of the table are updated until time t− 1
and let vt be the vertex revealed by the adversary at time
t. The framework first assigns an auxiliary color to vt such
that the auxiliary coloring of V 1

t−1 together with the color
of vt is a proper coloring of G(H(V 1

t−1 ∪ {vt})). This is
always possible, because the Delaunay graph G(H(V `

t )) is
3-colorable (easy proof). Any (proper) coloring procedure
can be used by the framework. For example a first-fit greedy
procedure in which all colors in the order a, b, c are checked
until one is found. If this color is the same as f(1) (the
auxiliary color that is associated with entry 1), then the final
color in the online CF-coloring of vt is 1 and the updating
process for the t-th vertex stops. Otherwise, if an auxiliary
color cannot be found or if the assigned auxiliary color is
not the same as the color associated with this entry, the
updating process continues to the next entry. The updating
process stops at the first entry ` for which vt is both added
to V `

t and the auxiliary color assigned to vt is the same as
f(`). The color of vt in the final conflict-free coloring is then
set to `.

The 3-colorability of the Delaunay graph G(H(V `
t )) im-

plies that G(H(V `
t )) has an independent set of size at least

d|V `
t |/3e. Intuitively, an algorithm that chooses a large in-

dependent set in each entry uses few colors in total. The
above framework was used in an offline setting in [2]. In
that case, the algorithm chooses f after it sees the whole
input. In the following, we show how the above framework
can be adapted to a randomized and a recoloring setting.

A randomized O(log n) algorithm.
If the choice of f(`) is uniformly random for every `, at

each level, the expected value of the size of the indepen-
dent set with color f(`) is |V `

t |/3 and it is not difficult
to prove that this algorithm uses with high probability at
most log3/2 n + 1 colors. In contrast with the algorithm
in [3] which uses a linear number of random bits, our al-
gorithm uses a logarithmic number of bits with high prob-

ability. In [3] the expected number of colors is bounded
by log8/7 n + 1 ≈ 5.19 log2 n, three times our bound of
log3/2 n + 1 ≈ 1.71 log2 n.

An O(log n) algorithm with recoloring.
We describe a deterministic online CF-coloring algorithm

for intervals that is only allowed to recolor a single old point
during each request of a new point. The algorithm uses two
auxiliary colors: a and d (points colored with d correspond
to ones colored with b, c above; we use only d in the presen-
tation for simplicity). All points that get to the entry ` and
are assigned a get real color at entry ` (similar to f(`) = a).
Points that are assigned d get their real color at a higher
entry. In order to have logarithmic number of entries (and
thus total colors) the size of the independent set colored
with a has to be large. To achieve this goal, our algorithm
maintains the following invariant in every level: For every
point colored with d, there exists an adjacent point colored
with a. Therefore, at least a third of the points that get to
each entry get color a, and two thirds are deferred for col-
oring in a higher entry. Again, the colors used in total are
at most log3/2 n + 1; the number of recolorings is at most
n−(blg nc+1) and this is tight. When a new point p arrives,
it is colored according to the following algorithm, starting
from entry 1:

• We color point p with a if this does not generate two
consecutive a’s. In this case, the point gets a real color
at this entry.

• We color point p with d if it does not generate a point
colored with d that will not have an adjacent point
colored with a. Note that here p is deferred for real
coloring at a higher entry and thus the same algorithm
is recursively applied at the next entry.

• It remains to handle the case where the new point p
has a point colored with a on one side and a point, say
q, colored with d on the other side, such that q has no
adjacent point colored with a. We color p with d in the
current entry and the real color of q, and we recolor q
with a, and thus we recolor q with the real color of the
current entry.

References.
[1] Amotz Bar-Noy, Panagiotis Cheilaris, Svetlana Olonetsky, and

Shakhar Smorodinsky. Randomized online conflict-free coloring
for hypergraphs. Manuscript, 2006.

[2] Amotz Bar-Noy, Panagiotis Cheilaris, and Shakhar Smorodinsky.
Conflict-free coloring for intervals: from offline to online. In
Proceedings of the 18th annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages
128–137, 2006.

[3] Ke Chen, Amos Fiat, Haim Kaplan, Meital Levy, Jǐŕı Matoušek,
Elchanan Mossel, János Pach, Micha Sharir, Shakhar
Smorodinsky, Uli Wagner, and Emo Welzl. Online conflict-free
coloring for intervals. SIAM Journal on Computing,
36(5):956–973, 2006.

[4] Guy Even, Zvi Lotker, Dana Ron, and Shakhar Smorodinsky.
Conflict-free colorings of simple geometric regions with
applications to frequency assignment in cellular networks. SIAM
Journal on Computing, 33:94–136, 2003.

[5] Ingo Schiermeyer, Zsolt Tuza, and Margit Voigt. On-line
rankings of graphs. Discrete Mathematics, 212(1–2):141–147,
2000.

[6] Shakhar Smorodinsky. Combinatorial Problems in
Computational Geometry. PhD thesis, School of Computer
Science, Tel-Aviv University, 2003.


