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Abstract. Early identification of problematic patterns in real designs is of great value as the lithographic simulation
tools face significant timing challenges. To reduce the processing time such a tool selects only a fraction of possible
patterns which have a probable area of failure, with the risk of missing some problematic patterns. In this paper,
we introduce a fast method to automatically extract patterns based on their structure and context, using the Voronoi
diagram of line-segments derived from the edges of VLSI design shapes. We first use the line-segment Voronoi
diagram to derive possible problematic locations and then we use the derived locations for extracting the problematic
windows or patterns from the design layout. The problematic locations are prioritized by the shape and proximity
information of design polygons. We did experiments for pattern selection in a portion of a 22nm random logic design
layout. The design layout had 38584 design polygons (made of 199946 line-segments), Mx layer, and 7079 ORC
(Optical Rule Checker) generated markers. We verify our approach by comparing the coverage of our extracted
patterns to the ORC generated markers.
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1 Introduction

With the increase in miniaturization of current VLSI patterns, there is a significant rise in print-
ability problems of such patterns, during the photolithography process. The analysis of patterns
to find faults or error-prone locations, is of prime importance to the manufacturing process. There
are mainly two kinds of faults that can occur during printing: a pinch and a bridge. A pinch corre-
sponds to an open fault and it occurs due to incomplete printing of a shape or due to discontinuity
in the printing of a shape. A bridge corresponds to a short fault and occurs when two printed shapes
are touching each other.

The analysis of a complete layout for finding faults or error-prone locations is difficult and very
time-consuming. The printability of a layout is related to the patterns it contains. Therefore, pattern
selection should be done in such a way so that the analysis of the selected patterns is sufficient to
assess the quality of the whole layout. In other words, it is important to identify patterns, known
as patterns of interest (POI), which are prone to faults. A relatively small number of POIs that
cover sufficiently the whole layout allow for a faster yet effective analysis of the layout. Obtaining
an optimal set of POIs is a big challenge in this domain. The success of printing a POI is verified
by taking several measurements, such as critical distance, on potentially critical areas of scanning
electron microscope (SEM) images of the printed pattern. Therefore, the location of measurement
is very important for proper evaluation of a POI.

In each pattern the measurement location is called a gauge.1 The gauge is typically represented
by a line in the VLSI pattern, around which a critical distance is measured. Gauge locations must
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be meaningful, that is, the critical distance measurement around the gauge location should be the
correct measurement for the pattern. Current gauge suggestion techniques are rule-based or they
are done manually by VLSI designers. The suggested gauges very often miss the location of the
critical distance or the location of faults. The actual location of faults within a POI is known as
a hotspot. Gauges are the indicators that help to categorize a pattern as POI and locate hotspots
within the pattern. Good gauge suggestions improve the evaluation of a pattern, and contribute to
the goal of achieving an optimal set of POIs.

In the literature, there are many variants of hotspot identification, like, machine learning al-
gorithms,2, 3 image recognition techniques,1, 4, 5 design based approach,6 pattern matching tech-
niques,7, 8 and topology oriented techniques.9, 22 For machine learning techniques, the learning
time is high and there is a need of already available hotspots for training set. Image recognition
techniques need to go over the whole layout for hotspot detection which is very time consuming.
Pattern matching techniques work on a predefined set of hotspot patterns and has a limitation of
detecting unseen hotspots. The design based approach also been observed to be very time con-
suming as it needs to analyze the entire design. In general, the random nature of layout patterns
are difficult to predict for all the above mentioned methods. Topology oriented pattern extraction
techniques9 can be useful to handle random patterns, although it do not claim to be general method
to detect all hotsots in a layout. In this paper, we introduce a new topology oriented technique for
pattern extraction, based on the geometric information of layout shapes.

The set of POI and hotspots are of prime importance to address printability problems. After
obtaining the set of POI and hotspot, designers modify the mask designs accordingly, with a goal
to improve the level of yield. This needs a feedback-model for verification. VLSI designers have
developed several models based of POI, including model-based optical proximity correction.1, 5, 10

Hotspots are feedback to the OPC process for better yield. An optimized MB-OPC demands an op-
timal set of problematic patterns, but identifying such a set in a time efficient manner is very hard.
Currently reliable OPC models are mainly based on image parameters of the test patterns.1, 5, 10 The
techniques involving image parameters are computationally very expensive. Another problem is
the automation of identification of problematic patterns. In many cases, expertise of lithographers
and design engineers provides the problematic patterns by manual inspection of the layout. Some
new automatic approaches11, 12 use a combination of parameters. These techniques sample the full
spectrum of patterns and thus tend to be computationally expensive. We focus on the automatic
and fast identification of problematic patterns.

For the feedback to OPC models, VLSI designers have developed tools to identify optical rule
violation in the simulated lithographic patterns. These tools are used for checking the feature size
that can hinder to achieve an acceptable level of yield of the chip. An Optical rule checker (ORC)13

is a program that encodes and verifies the rules for ideal simulated lithographic patterns. Given
the lithographic processing conditions, an ORC run generates markers on the violation of an ORC
rule. Therefore, the problematic patterns in the layout are around the ORC markers. These set of
patterns can be feedback to OPC for better yield in manufacturing.

In this paper we provide a fast automatic approach to derive a near optimal set of problematic
patterns for a layout; which lay a foundation for an approach to obtain sets of patterns that can be
potentially used for calibration and verification of MB-OPC. In particular, we find gauge locations
using the line-segment Voronoi diagram of layout shapes and give priority to the gauges depending
upon the shape and proximity information of the design polygons. The gauge locations are then
used to extract windows from the design layout. We extract one window per gauge location. The
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Fig 1 (a) Segment Voronoi diagram under L∞ metric, with five distinct sites S1, S2, S3, S4, S5, for interiors of seg-
ments and their endpoints. The lightly shaded portion is the Voronoi region of the endpoints of the segment S5, dark
shaded portion is the Voronoi region of the interior of the segment S5. The thick red line is the Voronoi edge separating
the faces defined by segments S5 and S2, (b) Voronoi diagram (in red) of two design polygons (in gray), w is the width
parameter and is encoded by a Voronoi edge shown in red dashed line, and s is the space parameter encoded by a
Voronoi edge shown in thick red line.

windows contain patterns which are potentially problematic. Finally, we verify the usefulness of
the extracted windows by comparing the coverage of the problematic patterns with respect to the
ORC generated markers. We observe that the set of patterns extracted by our tool covers all the
ORC generated markers for the given layout.

The rest of this work is organized as follows. In section 2, we introduce the line-segment
Voronoi diagram in the L∞ metric as used in the VLSI pattern analysis. We describe the gauges
and their scoring method in section 3. We describe our method to detect potentially critical loca-
tions in the VLSI design layout using the segment Voronoi diagram and then describe our pattern
selection procedure in section 4. We discuss our experimental results on the design layout in sec-
tion 5.

2 The L∞ line-segment Voronoi diagram

Let S be a set of sites (simple geometric objects such as points, line-segments, or simple polygons)
in the plane. The nearest-neighbor Voronoi diagram (Voronoi diagram)14, 15 of S is a subdivision
of the plane into regions such that the region of a site s ∈ S is the locus of points closer to s than to
any other site in S. The distance of a site s from a point q in the plane is d(s, q) = minp∈s d(p, q),
where the the interpoint distance d(p, q) can be the Euclidean (L2) distance, the Manhattan (L1,
L∞) distance, or any other metric. In this paper, we use the L∞ metric (or maximum norm), where
the distance between two points p and q is given by : d(p, q) = d∞(p, q) = max(|px−qx|, |py−qy|).

The Voronoi diagram of S is a planar graph of linear complexity on the total complexity of the
input sites. Each face corresponds to the Voronoi region of a site s ∈ S: reg(s) = {q ∈ R2 |
d(s, q) < d(s

′
, q),∀s′ ∈ S \ {s}. Each region contains its defining site. Figure 1(a) illustrates the

Voronoi diagram of a set of line-segments {S1, S2, S3, S4, S5}. The shaded region is the Voronoi
region of line-segment S5 and it contains S5. The boundary between two neighboring faces is
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an edge of the diagram (see e.g. the thick red line in Figure 1(a)). A Voronoi edge is the locus
of points equidistant from the respective defining sites of the two neighboring faces. Edges meet
at vertices of the diagram. At least three Voronoi edges meet at a Voronoi vertex. The Voronoi
diagram encodes proximity information of the input sites. The time complexity of construction
algorithms for Voronoi diagram of S is O(n log n),14, 15 where n is the total complexity of the input
sites. For more information on Voronoi diagrams see the book of Aurenhammer et al.15

A VLSI layout is composed of design polygons which are mostly rectilinear. There are two im-
portant parameters, width and space, that describe patterns in a VLSI layout. The width parameter
is defined as the distance between two parallel edges of a design polygon. A Voronoi edge internal
to a design polygon encodes this width parameter (see e.g. the thin dashed line in Fig. 1(b)). The
space parameter is defined as the distance of separation of two design polygons. A Voronoi edge
induced by edges of two different design polygons encodes the space parameter (see e.g. the thick
red line in Fig. 1(b)).

For point sites in a plane, the Voronoi diagram is available through MATLAB16 (matrix lab-
oratory), which is used in several engineering principles. In a VLSI layout, the Voronoi diagram
of polygons or their edges is required. This is available through the CGAL library,17 currently in
the standard Euclidean metric.18 CGAL is an open source C++ library that provides easy access to
efficient and reliable geometric algorithms. We have developed the L∞ line-segment Voronoi dia-
gram in the CGAL environment,22, 23 which is submitted for inclusion in the library and is currently
under review.

Voronoi diagrams of line segments in the L∞ metric have nice properties, especially for the
VLSI environment where shapes are predominantly rectilinear. Unlike its Euclidean counterpart,
the L∞ line-segment Voronoi diagram consists exclusively of straight line-segments, and Voronoi
vertices are on rational coordinates. That is, for rectilinear layouts, the Voronoi diagram consists
of rectlinear edges and edges of slope ±1 and thus Voronoi vertices appear on a grid only slightly
finer than the input coordinate grid. In this environment, use of the L∞ metric is desirable because
of its simplicity and its already proven utility in the area of VLSI CAD, in particular, the critical
area problem.19–21

3 Gauge suggestion using the line-segment Voronoi diagram

For a given layout, we identify gauge locations. We use the L∞ line-segment Voronoi diagram to
suggest good gauge locations based on the proximity information of the shapes of a pattern, e.g.,
the spacing between shapes or the extent of interaction between neighboring shapes. We suggest
five types of gauges, internal, external, sandwich, comb and T, as illustrated in Fig. 2. Figure 3
illustrates different gauges in a portion of a design layout.

Following are the description of the above mentioned type of gauges:

1. Internal gauge (inside a shape), Gi: This gauge lies on the center of a Voronoi edge in the
interior of the polygonal shape of minimum width in the pattern (see Gi in Fig. 2). The
position of Gi is a probable location for a pinch, when printing the pattern.

2. External gauge (between different neighboring shapes), Ge: This gauge lies on the center
of the Voronoi edge between the two shapes that are closest in the pattern (see Ge in Fig.
2). The position of Ge is a probable location for the formation of a bridge between the two
corresponding shapes, when printing the pattern.
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Fig 2 Different gauge suggestions.

3. Sandwich gauge, Gs: This gauge lies on the center of the Voronoi edge inside a polygonal
shape P1 that is “sandwiched” between two other shapes P2 and P3 for which the distance
between P2 and P3 is the minimum in the pattern (see Gs in Fig. 2). There is a probability
of a pinch happening at P1 around Gs because of the influence of P2 and P3.

4. Comb gauge, Gc: This gauge lies on the center of the Voronoi edge inside a long polygonal
shape, which is the base of the comb and it has close to it and on one side of it a number of
polygonal shapes which are the teeth of the comb. We report the gauge for the configuration
where the base of the comb shape is closer to the teeth in the pattern (see Gc in Fig. 2). The
position of Gc is dangerous for a pinch, when printing the pattern.

5. T gauge, Gt: A comb gauge at a minimum must contain one tooth and a base. We call such a
minimal comb gauge a T gauge (see Gt in Fig. 2). The position of Gt is a probable location
for a pinch, when printing the pattern.

We have validated the usefulness of our gauges by experiments on small size patterns in a
recent paper.22 For each small size pattern we suggested gauges. We then measured the distance
in pixels in the corresponding SEM image for each suggested gauge and we took the minimum.
In most of the patterns we improved the critical distance measurement and in some cases we
were able to locate hotspot missed by suggested gauges of conventional method. This ability may
find additional uses in the area, in particular, potentially these gauges can be used in the model
generation of MB-OPC.

We introduce a scoring method for gauges, which is used for prioritizing the gauges to deter-
mine problematic patterns efficiently. For each gauge we provide a score. The score associated
with a gauge determines its affinity towards the printing problem. The score for a gauge indicates
the potential of failure around the location of the gauge, when printing the related pattern.

3.1 Scoring method for gauges

For each type of gauge we defined scores as follows:
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• Score of an internal gauge: Let Pi be a shape in the design layout. The score of an internal
gauge is the minimum width value in Pi (w in Fig. 4 (a)). In case there are shapes with same
width, we break ties using extension parameter. The extension parameter is the length of the
Voronoi edge associated with an internal gauge. The extension parameter does not change
the value of the score, it is just used to change the order of the gauge in the priority list in
case of ties. The gauge associated with the longer shape that is having a greater value of
associated extension parameter gets more priority and will be ranked higher in the ordered
list of internal gauges. Lower width implies a thinner and a greater extension implies a
longer shape; a thin long shape has more probability to give rise to a pinch.

• Score of an external gauge: Let Pa and Pb be two neighboring shapes in the design layout.
The score of an external gauge associated with Pa and Pb is the separating distance (s in the
Figure 4 (b)) between Pa and Pb. This is encoded by the associated Voronoi edge between Pa

and Pb. When there are gauges with the same score, we break ties by extension parameter.
The gauge whose asscociated Voronoi edge is longer gets more priority, as it implies more
interaction between the shapes and higher probability of a bridge.

• Score of a sandwich gauge: Let Px, Py, and Pz be three shapes in a design layout such that Py

is sandwiched between Px and Pz. We define the score for the sandwich gauge equal to the
0.5× d (see Fig. 4 (c)), where d is the distance between the Voronoi edges Exy and Eyz (see
Figure 4 (c)). If there are (Px, Py, Pz) triples with the same score, we use overlap parameter
to break ties; a sandwich gauge with a greater overlap parameter gets more priority. The
overlap parameter is the measure of the length of the overlapping portion of Voronoi edges
Exy, Ey, and Eyz associated with the sandwich configuration (see Fig. 4 (c)).

• Score of a comb gauge: For the score of comb gauges, we first define the distance between
the tooth (Pt) and the base (Pb) as the distance between the Voronoi edges Etb and Eb (as
shown in Figure 4 (d)), let it be dtb. The Voronoi edge Etb is associated with an edge of the

Fig 3 Showing different gauges in a portion of design layout: shapes in grey are design polygons, Voronoi diagram
of design polygons is shown by dashed lines, and different gauges are color coded (blue-internal, red-external, green-
sandwich).
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Fig 4 An example showing different gauges with their scoring formula: (a) internal gauge with score = w, (b) external
gauge with score = s, (c) sandwich gauge with score = 0.5× d, and (d) comb gauge with score = 0.75× dtb, the score
of a T gauge is computed similarly with score = 0.80× dtb.

base and an edge of the tooth, and the Voronoi edge Eb is an edge associated with the base
of the comb. The score of a comb gauge is then defined as 0.75×dtb. In case, we have comb
gauges with same score, we break ties by the measure of overlap between Etb and Eb. We
give priority to the comb gauge where tooth has more overlap with the base.

• Score of a T gauge: For T gauges the score is defined as 0.80 × dtb. The ties for T gauges
are broken in the same way as for comb gauges.

The lower the score of a gauge, the higher is the probability of getting a problematic pattern
around that gauge. In case gauges get same score by the our mentioned scoring method, we
break the ties by extension and overlap parameters. Higher value of these parameters gives higher
priority to the gauges as described in the scoring method of gauges. We also compare different
type of gauges, in case, two different type of gauges have same score, we use context parameter to
break ties. The context parameter is the measure of complexity of the pattern associated with the
gauge. Let Ci, Ce, Cs, Cc, and Ct be the context parameter of internal, external, sandwich, comb
and T gauges respectively. We have simply considered a hard coded order of context parameter
for different gauges: Cs > Cc > Ct > Ce > Ci. For example, a sandwich gauge gs and an internal
gauge gi have same score, then gs will have more priority than gi, because Cs > Ci. The scoring
method along with the parameters, provide us a priority based ordered list of gauges. Figure 4
illustrates each type of gauge with its scoring formula.

4 Pattern selection based on the scoring method

We use the gauge locations as described in Section 3 to extract windows or patterns from the design
layout . We feed our pattern selection tool with two inputs (see Figure: 5): (1) A design layout,
(2) A set of markers for the design layout. A marker is a region in the design that indicates a
problematic area that has high probability of faults and is generally given in form of rectangles.
For a given design layout we first obtain the priority based ordered list of gauge locations, and then
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Fig 5 Block diagram of flow for the pattern selection using Segment Voronoi diagram.

we traverse the ordered list to extract patterns; one pattern per gauge. Following are the steps of
our Voronoi based pattern selection tool:

1. Compute all the possible gauge locations in the given layout.

2. Sort all the gauges according to the scoring function.

3. For each gauge, consider a window of 5− 8 pitches with the gauge location as the center of
the window.

4. For each window check if it covers any marker. Select a window only if it covers some
marker, that has not already been covered by a previous window, othersiwe discard it.

As we do not desire overlapping windows, we prune the duplicate windows, which covers
already covered markers. and thus we obtain a set of unique windows for a layout. The obtained
set of patterns can be potentially used as a verification set for MB-OPC.

In step 4 of the pattern selection procedure, we have considered a marker to be covered in three
different ways: (A) when the geometric center of the marker is strictly inside the corresponding
window of a gauge, we say that the gauge covers the marker, (B) when the whole marker rectangle
is completely inside the corresponding window of the gauge, and (C) when the marker rectangle
overlaps with the gauge window.

Remark: Note that (B) may miss many markers because very long marker or wide marker may
not fit completely inside windows that we considered.

The results of our experiment for our three different methods (A), (B), and (C) of marker
covering are shown in Table 1, Table 2, and Table 3 respectively in Section 5.

To analyze the quality of our gauges we further investigated the number of windows required
to cover all the markers. We implemented a simple heuristic that takes a window of different sizes
and goes over the layout to cover the markers. The input to our heuristic algorithm is a set of
points, and the output is a set of windows, which covers the input set of points. Let P be an input
set of points to our heuristic algorithm. In the context of our experiments, the set of points can
be a set of marker centers, or a set of gauge locations. The description of the heuristic algorithm
follows:

1. Find the leftmost x and bottommost y coordinate in P and let this point be (lx, by). Construct
a window with (lx, by) as its bottom left corner.

2. For each point in P , remove the point if it is inside the window.
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3. If | P |6= 0 (remaining list is not empty), then increment the window counter by 1 and repeat
steps 1 and 2; otherwise report the number of windows required to cover all the points in the
given set.

To further minimize the number of patterns, we apply this heuristic to gauge locations, and obtain
a reduced set of patterns. The next section provides the experimental results.

5 Experimental results

We have done experiments for pattern selection on a portion of 22nm random logic design layout,
provided with a state of the art markers for the corresponding layout. The 22nm layout had 38584
design polygons, and 7079 markers. The experiments are executed on a MacBook Pro 2.2 GHz
Intel i7 with 4 GB RAM.

5.1 Marker coverage

We check the quality of the gauges by counting the number of gauges needed to cover all the
markers. We considered four window sizes (in pitches × pitches), 5× 5, 6× 6, 7× 7, and 8× 8.
We observed that the smaller windows were not able to cover all the markers. As we increased the
window size the covering of marker increased. Our results are summarized in Tables 1 , 2, and 3,
and the graph shown in figures 6, and 7.

The notations in Tables 1, 2, and 3 are as follows: Ws = window size = pitches × pitches,
Mc = Number of markers covered, Gu = Number of gauges used, ru = Normalized range of
scores of useful gauges (normalized gauge score = gs

Hs
, where gs is the score of a gauge, and Hs is

the highest recorded score among all considered gauges), Gf = Number of gauges failed to detect
any marker, rf = Normalized range of scores of failed gauges, pd = Probability of detection of
markers by the provided gauge set = Mc

7079
× 100, pm = Probability that markers will be missed

by the given gauge set will be 1 − pd, ug = percentage of useful gauges those detect at least one
marker (this basically evaluates the scoring function) = Gu

Gu+Gf
× 100, and T = Time taken to run

the experiment on a MacBook Pro 2.2 GHz Intel i7 with 4 GB RAM.
In Table 1, we show results of our experiment for method (A) of marker covering, where we

vary the window size and check the covering of the markers by the windows extracted by using
gauge locations. Recall that for method (A), a marker is considered covered, if the geometrical
center of the marker is within some window. The gauge utilization, that is the percentage of gauges
which successfully covered at least some marker, increases with the increase in the window size.
The larger window has more chance to cover more marker centers, provided the location of the
window is chosen logically, and in this case the windows are chosen with priority, based on the
priority of the guages, which in turn depends on shapes and the proximity information of the shapes
in the design. The probability of marker coverage increases with the increase in the window size.
We observe 100% marker coverage for the window size of 7 × 7 and 8 × 8. The run time of the
experiment decreases with the increase in the window size, and this is because the markers are
exhausted quickly with the increasing window size. For all the different window sizes the run time
is within 20 seconds. The variation of marker coverage with window size for this case is shown in
Fig 6.

Table 2 shows the result for method (B) of marker covering, in which a marker is considered
covered, if the marker area is completely within some window. The marker coverage increases
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Table 1 Covering of marker centers by windows generated by gauge set
Ws (pitches × pitches) Mc Gu ru Gf rf pd ug T

5× 5 6968 5708 [0.05 - 1.0] 1638 [0.05 - 0.1] 98.43% 77.70 % 18.208 sec
6× 6 7070 5306 [0.05 - 0.55] 675 [0.05 - 0.1] 99.87 % 88.71% 17.666 sec
7× 7 7079 5029 [0.05 - 0.2] 383 [0.05 - 0.1] 100% 92.92% 16.768 sec
8× 8 7079 4767 [0.05 - 0.16] 354 [0.05 - 0.1] 100% 93.08% 16.056 sec

Table 2 Covering of marker rectangles by windows generated by gauge set
Ws (pitches × pitches) Mc Gu ru Gf rf pd ug T

5× 5 6101 5202 [0.05 - 0.6] 2278 [0.05 - 0.1] 86.18% 69.54% 68.63sec
6× 6 6711 5263 [0.05 - 0.55] 691 [0.05 - 0.1] 94.8% 88.39 % 61.93sec
7× 7 6908 5126 [0.05 - 0.4] 334 [0.05 - 0.1] 97.58% 93.88% 59.21sec
8× 8 7014 4899 [0.05 - 0.2] 370 [0.05 - 0.1] 99.08% 92.97% 57.12sec

with the increase in window size. The gauge utilization first increases with the increase in window
size (from 5× 5 to 7× 7), and then decreases as we further increase the window size (from 7× 7
to 8 × 8), this is because the bigger windows has potential to cover more markers but we need to
check with more number of windows, as there are many windows which do not completely contain
any marker. In this case also we observe that the probability of marker coverage increases with
the increase in window size. We were not able to cover 100% markers, mainly due to the fact that
some markers were very long or wide and were not fitting in completely within any acceptable
window size. The best case was 99.08% for the window size of 8× 8. For all the different window
sizes the run time is within 70 seconds.

Table 3 shows the result for method (C) of marker covering, in which a marker is considered
covered, if the marker area is overlapping within some window. The probability of marker coverage
increases with the increase in window size. We observe 100% marker coverage for the window
size of 7×7 and 8×8. For all the different window sizes the run time is within 4 minutes. The time
taken in this case is more compared to the other two cases as the predicate to determine overlap
between window and design shapes takes more time that the predicate that determines if a point is
inside a window or a rectangle is completely inside a window.

We observe that the window size of 7 × 7 and 8 × 8 gives fairly acceptable results in terms
of marker coverage in all cases. All types of gauges has the most critical gauge score of highest
priority (0.05). A clear observation from the range of scores for Gu is that, with the increase of
window size, there is a decrease in the requirement of low priority gauges. In all cases the range
of score for Gf is [0.05 - 0.1], which suggests that the gauge (which belongs to Gf ) locations are
critical and there is a possibility of finding a problematic pattern around these gauges, although in
this specific layout they did not cover any ORC marker. The range of scores for Gf in all cases
indicates that the scoring method captures the pattern criticality and is also able to capture more
patterns that may be needed to minimize the probability of missing problematic patterns.

The variation of marker coverage with window size for all cases are shown in Fig 6. The

Table 3 Covering (overlapping) of marker rectangles by windows generated by gauge set
Ws (pitches × pitches) Mc Gu ru Gf rf pd ug T

5× 5 7011 5607 [0.05 - 0.6] 1627 [0.05 - 0.1] 99.03% 77.50% 3m 57s
6× 6 7073 5180 [0.05 - 0.4] 341 [0.05 - 0.1] 99.91% 93.82% 3m 44s
7× 7 7079 4910 [0.05 - 0.2] 319 [0.05 - 0.1] 100% 93.89% 2m 25s
8× 8 7079 4686 [0.05 - 0.16] 339 [0.05 - 0.1] 100% 93.25% 1m 28s
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Fig 6 Variation of markers covered w.r.t the window size. Fig 7 Variation of useful gauges w.r.t the window size.

Fig 8 Variation of runtimes of the experiments w.r.t the window size.

variation of useful gauges with window size for all cases are shown in Fig 7. We have compared
the runtime of the experiments based on three different ways of marker covering in the Figure 8.

5.2 Gauge distribution

We performed experiments to find out the distribution of gauges covering the markers. The nota-
tions used in the Table 4 and 5: ri = Normalized range of scores of internal gauges, re = Nor-
malized range of scores of external gauges, rs = Normalized range of scores of sandwich gauges,
rt = Normalized range of scores of T gauges. In Table 4, we give detailed results on the marker
coverage by the different types of gauges with respect to the experiment on marker coverage. We
observe that all types of gauges are useful, as there are at least some gauges of each type covering
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Table 4 Gauge distribution for marker covering: A, B, C are gauge distribution for three different ways of covering
markers that is, marker center inside the window, markers are completely inside the window respectively, and markers
are overlapping with windows.

Ws Intra ri Extra re Sandwich rs T rt Total
A 5× 5 30 [0.2 - 0.4] 38 [0.05 - 1.0] 5388 [0.075 - 0.3] 252 [0.16 - 0.32] 5708

6× 6 6 [0.2 - 0.4] 13 [0.05 - 0.55] 5240 [0.075 - 0.1] 47 [0.16 - 0.16] 5306
7× 7 1 [0.2 - 0.2] 7 [0.05 - 0.1] 5005 [0.075 - 0.1] 16 [0.16 - 0.16] 5029
8× 8 0 [0 - 0] 6 [0.05 - 0.05] 4753 [0.075 - 0.1] 8 [0.16 - 0.16] 4767

B 5× 5 57 [0.2 - 0.4] 56 [0.05 - 0.6] 4686 [0.075 - 0.3] 403 [0.16 - 0.16] 5202
6× 6 12 [0.2 - 0.4] 18 [0.05 - 0.55] 5141 [0.075 - 0.2] 92 [0.16 - 0.16] 5263
7× 7 4 [0.2 - 0.4] 9 [0.05 - 0.4] 5078 [0.075 - 0.2] 35 [0.16 - 0.16] 5126
8× 8 1 [0.2 - 0.2] 7 [0.05 - 0.1] 4880 [0.075 - 0.1] 11 [0.16 - 0.16] 4899

C 5× 5 15 [0.2 - 0.4] 29 [0.05 - 0.6] 5424 [0.075 - 0.2] 139 [0.16 - 0.32] 5607
6× 6 4 [0.2 - 0.4] 11 [0.05 - 0.4] 5135 [0.075 - 0.1] 30 [0.16 - 0.16] 5180
7× 7 1 [0.2 - 0.2] 7 [0.05 - 0.1] 4888 [0.075 - 0.1] 14 [0.16 - 0.16] 4910
8× 8 0 [0 - 0] 6 [0.05 - 0.05] 4673 [0.075 - 0.1] 7 [0.16 - 0.16] 4686

Table 5 Distribution of gauges do not covering any markers.
Ws Intra ri Extra re Sandwich rs T rt Total

A 5× 5 0 [0 - 0] 3 [0.05 - 0.05] 1635 [0.1 - 0.1] 0 [0 - 0] 1638
6× 6 0 [0 - 0] 3 [0.05 - 0.05] 672 [0.1 - 0.1] 0 [0 - 0] 675
7× 7 0 [0 - 0] 3 [0.05 - 0.05] 380 [0.1 - 0.1] 0 [0 - 0] 383
8× 8 0 [0 - 0] 3 [0.05 - 0.05] 351 [0.1 - 0.1] 0 [0 - 0] 354

B 5× 5 0 [0 - 0] 3 [0.05 - 0.05] 2275 [0.1 - 0.1] 0 [0 - 0] 2278
6× 6 0 [0 - 0] 3 [0.05 - 0.05] 688 [0.1 - 0.1] 0 [0 - 0] 691
7× 7 0 [0 - 0] 3 [0.05 - 0.05] 331 [0.1 - 0.1] 0 [0 - 0] 334
8× 8 0 [0 - 0] 3 [0.05 - 0.05] 367 [0.1 - 0.1] 0 [0 - 0] 370

C 5× 5 0 [0 - 0] 3 [0.05 - 0.05] 1624 [0.1 - 0.1] 0 [0 - 0] 1627
6× 6 0 [0 - 0] 3 [0.05 - 0.05] 338 [0.1 - 0.1] 0 [0 - 0] 341
7× 7 0 [0 - 0] 3 [0.05 - 0.05] 316 [0.1 - 0.1] 0 [0 - 0] 319
8× 8 0 [0 - 0] 3 [0.05 - 0.05] 336 [0.1 - 0.1] 0 [0 - 0] 339

some markers. For this particular design layout, the sandwich gauge turned out to cover most of
the markers. In other design layouts other type of gauges may provide more useful windows to
cover markers. We do not overlook any type of gauges, however small is their contribution, as our
goal is to cover all the markers. In Table 5, we give the distribution of gauges which fail to cover
any marker. We observe that the failed gauges are of the extra or the sandwich type. The internal
and T type of gauges have no failure.

Remark: In Tables 4 and 5 we have not included any information on comb type of gauges.
This is because we have observed that neither comb gauges were used to cover any marker nor any
comb gauge was failed to cover any marker. The normalized gauge score for comb gauge is [0.15
- 0.15]. No comb gauge was found to fail in covering some marker, that is every comb gauge was
found to cover some marker. The score range of comb gauges suggests that they should be useful,
but they did not appear in the distribution of useful gauges, because they cover the markers, which
were already covered by gauges with greater priority (normalized score ≤ 0.15) than them.

5.3 Reduction of patterns by a simple heuristic

We tried to further reduce the number of patterns by applying the simple heuristic algorithm of
Section 4. First, we took a list of geometrical centers of all the markers as an input to the heuristic.
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Table 6 Covering of near by gauges by a greedy algorithm
Ws (pitches × pitches) number of windows before number of windows after Reduction in windows

5× 5 5709 4102 28.14%
6× 6 5306 3555 33.00%
7× 7 5029 3221 35.95%
8× 8 4767 3013 36.79%

The heuristic reports 3783 windows to cover all the marker centers. Then to further minimize the
number of windows, we applied the heuristic algorithm that tried to put the near by gauge centers
in to one window. The gauges obtained in experiment 1 using method (A) for marker covering was
input to the heuristic algorithm and then we obtained the number of windows to cover those gauge
centers. We observe a decrease in the required number of windows to cover the marker centers by
nearly 30%. We report the results in Table 6.

6 Conclusions

We discussed a new method to select a set of problematic patterns which is based on topological
information extracted from the Voronoi diagram of layout shapes. Our method is fast and auto-
matic way to discover the potentially problematic areas when printing VLSI layout patterns. We
verified our windows by covering ORC-generated markers. Using our pattern selection tool, we
covered 7079 ORC markers for a design layout with 38584 design polygons by nearly 5000 ex-
tracted patterns. Applying a simple heuristic algorithm we further reduced the number of patterns
by nearly 30%. The variety of gauges has a potential to extract topology and context based inter-
esting features of patterns, which laid a foundation for our future work of obtaining calibration and
verification set of patterns for MB-OPC.
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